1,159 research outputs found

    Uhlmann curvature in dissipative phase transitions

    Get PDF
    We study the mean Uhlmann curvature in fermionic systems undergoing a dissipative driven phase transition. We consider a paradigmatic class of lattice fermion systems in non-equilibrium steady-state of an open system with local reservoirs, which are characterised by a Gaussian fermionic steady state. In the thermodynamical limit, in systems with translational invariance we show that a singular behaviour of the Uhlmann curvature represents a sufficient criterion for criticalities, in the sense of diverging correlation length, and it is not otherwise sensitive to the closure of the Liouvillian dissipative gap. In finite size systems, we show that the scaling behaviour of the mean Uhlmann curvature maps faithfully the phase diagram, and a relation to the dissipative gap is put forward. We argue that the mean Uhlmann phase can shade light upon the nature of non equilibrium steady state criticality in particular with regard to the role played by quantum vs classical fluctuations.Comment: 5 pages, 3 figures with appendix of 10 pages, 1 figur

    Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources

    Get PDF
    We investigate the superconducting lifetime of long current-biased Josephson junctions, in the presence of Gaussian and non-Gaussian noise sources. In particular, we analyze the dynamics of a Josephson junction as a function of the noise signal intensity, for different values of the parameters of the system and external driving currents. We find that the mean lifetime of the superconductive state is characterized by nonmonotonic behavior as a function of noise intensity, driving frequency and junction length. We observe that these nonmonotonic behaviours are connected with the dynamics of the junction phase string during the switching towards the resistive state. An important role is played by the formation and propagation of solitons, with two different dynamical regimes characterizing the dynamics of the phase string. Our analysis allows to evidence the effects of different bias current densities, that is a simple spatially homogeneous distribution and a more realistic inhomogeneous distribution with high current values at the junction edges. Stochastic resonant activation, noise enhanced stability and temporary trapping phenomena are observed in the system investigated.Comment: 16 pages, 9 figures, Physical Review B, in pres

    Heisenberg Uncertainty Relation in Quantum Liouville Equation

    Get PDF
    We consider the quantum Liouville equation and give a characterization of the solutions which satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a particular solution of the quantum Liouville equation: the Wigner transformf(x,v,t) of a generic solutionψ(x;t) of the Schrödinger equation. We give a representation ofψ(x,t) by the Hermite functions. We show that the values of the variances ofxandvcalculated by using the Wigner functionf(x,v,t) coincide, respectively, with the variances of position operatorX^and conjugate momentum operatorP^obtained using the wave functionψ(x,t). Then we consider the Fourier transform of the density matrixρ(z,y,t) =ψ∗(z,t)ψ(y,t). We find again that the variances ofxandvobtained by usingρ(z,y,t) are respectively equal to the variances ofX^andP^calculated inψ(x,t). Finally we introduce the matrix∄Annâ€Č(t)∄and we show that a generic square-integrable functiong(x,v,t) can be written as Fourier transform of a density matrix, provided that the matrix∄Annâ€Č(t)∄is diagonalizable

    Quantum resonant activation

    Get PDF
    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multi-peaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency Μ∗\nu^* which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.Comment: 14 pages, 13 figure

    Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime

    Get PDF
    We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped \emph{intrawell} oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.Comment: 16 pages, 7 figure

    Effects of L\'evy noise on the dynamics of sine-Gordon solitons in long Josephson junctions

    Full text link
    We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of α\alpha-stable L\'evy distributions is considered as noise source, with varying stability index α\alpha and asymmetry parameter ÎČ\beta. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is directly related to the mean density of solitons which move into or from the washboard potential minimum corresponding to the initial superconductive state. Moreover, we observe: (i) a connection between the total mean soliton density and the mean potential difference across the junction; (ii) an inverse behavior of the mean voltage in comparison with the MST, with varying the junction length; (iii) evidences of non-monotonic behaviors, such as stochastic resonant activation and noise enhanced stability, of MST versus the driving frequency and noise intensity for different values of α\alpha and ÎČ\beta; (iv) finally, these non-monotonic behaviors are found to be related to the mean density of solitons formed along the junction.Comment: 24 pages, 8 figures, submitted to J. Stat. Mech.: Theory Exp. arXiv admin note: text overlap with arXiv:1406.481

    Lifetime of the superconductive state in short and long Josephson junctions

    Full text link
    We study the transient statistical properties of short and long Josephson junctions under the influence of thermal and correlated fluctuations. In particular, we investigate the lifetime of the superconductive metastable state finding the presence of noise induced phenomena. For short Josephson junctions we investigate the lifetime as a function both of the frequency of the current driving signal and the noise intensity and we find how these noise-induced effects are modified by the presence of a correlated noise source. For long Josephson junctions we integrate numerically the sine-Gordon equation calculating the lifetime as a function of the length of the junction both for inhomogeneous and homogeneous bias current distributions. We obtain a nonmonotonic behavior of the lifetime as a function of the frequency of the current driving signal and the correlation time of the noise. Moreover we find two maxima in the nonmonotonic behaviour of the mean escape time as a function of the correlated noise intensity.Comment: 12 pages, 9 figure

    Chemical Absorption by Aqueous Solution of Ammonia

    Get PDF
    Carbon capture is proposed as a viable way of exploiting the fossil resources for power plants and industrial processes. The post-combustion capture by chemical absorption in amine aqueous solutions has been in use in chemical and petrochemical areas for decades. As an alternative, the absorption in aqueous ammonia has received great attention recently. The carbon capture by aqueous ammonia is based on the conventional absorption-regeneration scheme applied to the ternary system CO2–NH3–H2O. It can be implemented in a chilled and a cooled process, depending upon the temperatures in the absorber and, hence, the precipitation of salts. The process simulation can be conducted in two manners: the equilibrium and the rate-based approaches. The specific heat duty is as low as 3.0, for the cooled process, and 2.2 MJ/kgCO2, for the chilled one. Moreover, the index SPECCA is as low as 2.6, for the cooled, and 2.9 MJ/kgCO2, for the chilled one. The overall energy performances from the simulations in the rate-based approach, compared against those in the equilibrium approach, result only slightly penalized. From an economic perspective, the carbon capture via chemical absorption by aqueous ammonia is a feasible retrofitting solution, yielding a cost of electricity of 82.4 €/MWhe and of avoided CO2 of 38.6 €/tCO2 for the chilled process
    • 

    corecore