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Uhlmann curvature in dissipative 
phase transitions
Angelo Carollo  1,2, Bernardo Spagnolo1,2,3 & Davide Valenti1,4

A novel approach based on the Uhlmann curvature is introduced for the investigation of non-equilibrium 
steady-state quantum phase transitions (NESS-QPTs). Equilibrium phase transitions fall invariably 
into two markedly non-overlapping categories: classical phase transitions and quantum phase 
transitions. NESS-QPTs offer a unique arena where such a distinction fades off. We propose a method 
to reveal and quantitatively assess the quantum character of such critical phenomena. We apply this 
tool to a paradigmatic class of lattice fermion systems with local reservoirs, characterised by Gaussian 
non-equilibrium steady states. The relations between the behaviour of the Uhlmann curvature, 
the divergence of the correlation length, the character of the criticality and the dissipative gap are 
demonstrated. We argue that this tool can shade light upon the nature of non equilibrium steady state 
criticality in particular with regard to the role played by quantum vs classical fluctuations.

A challenging new paradigm has recently been put forward by the discovery of novel types of quantum phase 
transitions (QPTs)1 occurring in non-equilibrium steady states (NESSs)2–10. A comprehensive picture and char-
acterisation of dissipative NESS-QPTs is lacking, partly due to their nature lying in a blurred domain, where 
features typical of zero temperature QPTs coexists with properties typical of thermal phase transitions. Such a 
coexistence between quantum and classical fluctuations are to some extent reminiscent of quantum to classical 
crossovers in equilibrium QPTs, with a major striking difference: the remarkably sharp character of a truly critical 
phenomenon. 

A natural approach to the investigation of such a novel scenario would be to adapt tools used in the equilib-
rium settings. In this letter, we propose the use of the geometric phase (GP)11,12, and in particular its mixed state 
generalisation, the Uhlmann GP13, to investigate NESS-QPT. GPs, and related geometrical tools, such as the Bures 
metrics14–16, have been successfully applied in the analysis of many equilibrium phase transitions17–20. The Bures 
metrics have been employed in thermal phase transitions21, and QPTs, both in symmetry-breaking17–20,22 as well 
as in topological phase transitions23. GPs are at the core of the characterisation of topological phase transitions24, 
and have been employed in the description and detection of QPTs, both theoretically25–33 and experimentally34. 
The use of GP in QPTs can be heuristically understood as follows: QPTs are determined by dramatic structural 
changes of the system state, resulting from small variations of control parameters. When approaching a criticality, 
two infinitesimally close states on the parameter manifold, become increasingly statistically distinguishable, i.e. 
their geometric-statistical distance grows. Abrupt changes in the distance are accompanied by singularities of the 
state space curvature, which in turn determine GP instabilities on states traversing loops in the neighbourhood 
of the criticality25–31.

Due to their mixed state nature, the NESSs require the use of a definition of GP in the density operators 
domain. Among all possible approaches13,35–39, the Uhlmann GP13 stands out for its deep-rooted relation to infor-
mation geometry and metrology40, whose tools have been profitably employed in the investigation of QPT and 
NESS-QPT18,41,42. Uhlmann holonomy and GP have been applied to the characterisation of both topological 
and symmetry breaking equilibrium QPT43–48. Many proposals to measure the Uhlmann GP have been put for-
ward49,50, and demonstrated experimentally51,52.

Motivated by this, we introduce the mean Uhlmann curvature (MUC) and investigate its role in the character-
isation of dissipative NESS-QPTs. The MUC, defined as the Uhlmann GP per unit area of a density matrix evolv-
ing along an infinitesimal loop, has also a fundamental interpretation in multiparameter quantum metrology: it 
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marks the measurement incompatibility between independent parameters arising from the quantum nature of 
the underlying physical system53. In this sense, the MUC is a measure of “quantumness” in the multi-parameter 
estimation problem, and its singular behaviour responds only to quantum fluctuations occurring across a phase 
transition.

We apply these ideas to the physically relevant setting of fermionic quadratic dissipative Lioviullian models, 
some of which show rich NESS features2,3,41,42,54,55.

Results
The mean Uhlmann curvature. The Uhlmann GP relies on the idea of amplitude of a mixed state. Given a 
density operator ρ acting on a Hilbert space  of dimension n, an amplitude is an operator w satisfying †ρ = ww . 
This definition leaves a U(n) gauge freedom in the choice of w, because w′ = wU, for any U ∈ U(n), generates the 
same ρ.

Let ρλ(t) be a family of density matrices, with γ λ= ∈ ∈t t T: { ( ) , [0, ]} a smooth closed path in a parame-
ter manifold , and wλ(t) is a corresponding path of amplitudes. To lift the U(n) gauge freedom, Uhlmann intro-
duced a parallel transport condition on wλ(t)

13. For a closed trajectory ρλ(t), initial and final amplitudes are related 
by a unitary transformation wλ(T) = wλ(0)Vγ. If the Uhlmann parallel transport condition is fullfilled, Vγ is a holo-
nomy, i.e. a non-Abelian generalisation of the Berry phase13, and reads ∮V ei A=γ γ , with   being the path order-
ing operator and λ= ∑μ μ μA A d  the Uhlmann connection one-form. The Uhlmann GP is defined as 

w w w w V[ ] : arg( , ) argTr( )U
T(0) ( ) (0) (0)

†ϕ γ = =λ λ λ λ γ .
The Uhlmann connection A can be derived from the ansatz56 ∂ = −μ μ μw L w iwA1

2
, where : / λ∂ = ∂ ∂μ μ, and 

Lμ’s are Hermitian operators known as symmetric logarithmic derivatives, implicitly defined as the operator solu-
tions of ρ ρ ρ∂ = +μ μ μL L: ( )1

2
. Unless otherwise stated, we will assume that ρ is full-rank. If ρ is singular, Lμ and 

Aμ are not unique. However, we will show that any quantity of interest to us can be extended by continuity to 
singular ρ’s57. It follows also that Aμ are Hermitian operators obeying the transformation rule of a non-abelian 
gauge potential, A U AU iU dU† †→ +  under w → wU, while Lμ are gauge invariant. The Uhlmann curvature, 
defined as Fμν = ∂μAν − ∂νAμ − i[Aμ, Aν], is equal to the Uhlmann holonomy per unit area associated to an infin-
itesimal loop in , i.e. =μν ε ε→

− γμ νF ilim
V

0

1
,

2 , where γμν is the infinitesimal parallelogram spanned by two inde-
pendent directions ê εμ  and ενê  in . We focus on the Uhlmann GP per unit area for an infinitesimal loop, i.e.

 †w w F: lim
[ ]

Tr( )
U

0 2 (0) (0)
ϕ γ

ε
= = .μν

ε

μν
λ λ μν

→

Notice that, while F is gauge covariant, i.e. it transforms as †→F U FU under w → wU, μν  is a gauge invariant, 
i.e. it depends only on the infinitesimal path ρ(t). In the gauge in which ρ=w (0)0 ,  ρ=μν μνFTr( ) acquires the 
meaning of a mean Uhlmann curvature (MUC).

It can be shown that (see Methods)

ρ= .μν μ ν
i L L
4

Tr [ , ] (1)

The above expression bears a striking resemblance with a pivotal quantity of quantum metrology, the quan-
tum Fisher information matrix, defined as ρ=μν μ νJ L LTr { , }1

2
. The quantum Fisher information matrix deter-

mines a figure of merit of the estimation precision of parameters labelling a quantum state, known as the 
quantum Cramér-Rao bound58,59. Given a set of locally unbiased estimators λ̂  of the parameters λ ∈ , the 
covariance matrix Cov( ) ( ) ( )λ λ λ λ λ= 〈 − − 〉μν μ μ ν ν

ˆ ˆ ˆ  is lower bounded (in a matrix sense) as follows

λ ≥ .−ˆ JCov( ) (2)1

For single parameter estimation, the Cramér-Rao bound can always be saturated by the projective measure-
ment on the eigenbasis of the symmetric logarithmic derivative. However, in a multi-parameter scenario this is 
not always the case, due to the non-commutativity of measurements associated to independent parameters. 
Within the framework of quantum local asymptotic normality60–62, one can prove that the multi-parameter quan-
tum Cramér-Rao bound is attainable iff =μν 0  for all λμ, λν

53. In this sense, μν  marks the incompatibility 
between λμ and λν, and such incompatibility arises from the inherent quantum nature of the underlying physical 
system. For a two-parameter model, the discrepancy between the attainable multi-parameter bound and 
the quantum Cramér-Rao bound can be estimated by the ratio | |μν J2 /Det , and the MUC is upper bounded by 
(see Methods)

| | ≤ .μν JDet /2 (3)

When saturated, bound (3) marks the condition of maximal incompatibility, in which the quantum indetermi-
nacy in the estimation problem reaches the order of Det(J)−1/2, the same of the quantum Cramér-Rao bound (2).

Dissipative quadratic models. We now investigate the scaling law of the MUC, in dissipative Markovian 
models whose dynamics are generated by a master equation of Lindblad type63
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L H † †∑ρ ρ ρ ρ ρ= = − + Λ Λ − Λ Λ .
α

α α α α
d
dt

i[ , ] (2 { , })
(4)

The Hamiltonian is assumed quadratic in the fermion operators, i.e. ω ω= H: T , where : ( )n
T

1 2ω ω ω= …  is 
a vector of Majorana operators: c c:k k k2 1ω = +−

†, †ω = −i c c: ( )k k k2 , with k = 1 … n, where ck and ck
† are annihila-

tion and creation operators. H = −HT is a 2n × 2n Hermitian matrix. lTωΛ =α α  are bath operators with 
= … ∈α

α αl l l: ( , , )n
T n

1 2
2 .

The Liouvillian  can be diagonalised exactly, and under certain conditions64, it admits a unique NESS ρ, which 
is Gaussian. A Gaussian state is completely specified by its correlation matrix ρ ω ωΓ =: 1/2Tr [ , ]jk j k . Let λ ∈  be 
the set of parameters on which H and lα’s depend. Due to uniqueness,  parametrises the admissible NESS ρ(λ). 
The correlation matrix of the NESS is the solution of the (continuous time) Lyapunov equation XΓ + ΓXT = Y, with 

= + =X iH M XRe: 4[ ( )] ⁎, and †= − = = −Y i M Y YIm: 8 ( ) T , where ⁎ †M l l M: ( ) ( )jk j k jk= ∑ =α
α α  is called 

bath matrix.
In Methods, we show that for a generic Gaussian Fermionic state the MUC can be expressed in a 

parameter-independent way, as

= Γ ∧
i K K
4

Tr( ), (5)

where K is the operator solution of the (discrete time) Lyapunov equation dΓ = ΓKΓ − K, which can be formally 
solved by K d1( Ad ) ( )1= − − ΓΓ

− , where = Γ ΓΓ X XAd ( ) : † is the adjoint action.
According to64, the condition of NESS uniqueness is Δ = ≥xRe: 2min ( ) 0j j , where xj is an eigenvalue of X, 

and Δ is the Liouvillian spectral gap. When this condition is met, any state will eventually decay into the NESS in 
a time scale τ Δ1/ . In the thermodynamical limit n → ∞ a vanishing gap Δ(n) → 0 may be accompained, 
though not-necessarily, by non-differentiable properties of the NESS2,65. For this reason, the scaling of Δ(n) has 
been used as an indication of NESS criticality65–69. NESS-QPT has been investigated through the scaling of the 
Bures metrics19, whose super-extensivity has been connected to a vanishing Δ41.

A similar relation between the super-extensivity of the MUC and Δ is implied by the inequality 
≤ =∞ ∞ ∞ J g/2  (see Methods), i.e. dY dX( 2 )

n
P 2

2≤ +
| |

Δ ∞ ∞
μν Γ , where ||B||∞ indicates the largest 

singular value of a matrix B, = + Γ ⊗ ΓΓ
−

∞P : (1 ) 1  and g is the Bures metric tensor, which, except in patho-
logical cases57, is equal to g = J/4. This bound shows that if P (1)Γ , a scaling of n 1| | ∝ α+  entails a dissipative 
gap that vanishes at least as Δ ∝ n−α/2, providing a relation between the dynamical properties of the NESS-QPT 
and the MUC.

However, as stated above, the scaling of MUC does indeed signal the presence of a NESS-QPT, but provide 
also a way of revealing the quantum character of the fluctuations that drive the criticality. On the one hand, the 
relation between MUC and quantum nature of the underlying physical system is apparent from the expression 
(1). The MUC arises from the commutator of two SLD, and, as such, its super-extensive properties cannot arise 
from classical fluctuations, as in equilibrium thermal phase transitions, but can only arise as a consequence of 
non-commutativity of close-by density matrices ρ(λ) and ρ(λ + dλ). In this sense,   is a signature of criticality 
associated to quantum fluctuations, as it cannot be sensitive to criticality induced by classical fluctuations, i.e. 
those associated only to changes in eigenvalues and not eigenstates of the density matrices.

Moreover, the comparison between the scaling laws of the MUC and quantum Fisher Information provides a 
means to estimate the quantum vs classical contributions to the fluctuations driving the criticality. This compari-
son is quantified by the ratio Q J: Det2 /Det= | | , which according to the inequality (3) is upper bounded by 
Q ≤ 1, hence its scaling law is at most ∼Q n0. When the above scaling law is saturated, the condition of maximal 
incompatibility of the associated quantum estimation problem is asymptotically satisfied. This implies that, in the 
thermodynamic limit n → ∞, the quantum character of the fluctuations driving the criticality cannot be 
neglected.

Let’s apply the above analysis to a specific model, the boundary-driven spin-1/2 XY chain2. In this model, an 
open chain of spin-1/2 particles interacts via the XY-Hamiltonian,

H 1
2

1
2

,
(6)

XY
j

n

j
x

j
x

j
y

j
y

j

n

j
z

1

1

1 1
1

∑ ∑δ σ σ δ σ σ λσ=




+
+

− 

 +

=

−

+ +
=

where the σj
x y z, ,  are Pauli operators acting on the spin on the j-th site. At each boundary, the chain is in contact with 

two different reservoirs, described by Lindblad operators i( )/2L L j
x

j
yκ σ σΛ = ±± ±  and i( )/2R R j

x
j
yκ σ σΛ = ±± ± . 

A Jordan-Wigner transform converts the system into a quadratic fermionic dissipative model with Gaussian 
NESS2,66. The system experiences different phases as the anisotropy δ and magnetic field h are varied. For 

δ< = | − |h h : 1c
2  the chain exibits long-range magnetic correlations (LRMC) and high sensitivity to external 

parameter variations. For h > hc and along the lines h = 0 and δ = 0 the model shows short-range correlations, with 
correlation function C :jk j

z
k
z

j
z

k
zσ σ σ σ= 〈 〉 − 〈 〉〈 〉 exponentially decaying: Cjk ∝  exp −  |j  −  k|/ξ ,  with 

 h h h4 2( )/c c
1ξ −− . In both long and short range phases, the dissipative gap closes as Δ = −n( )3  in the ther-

modynamical limit n → ∞. The critical line h = hc, is characterised by power-law decaying correlations Cjk ∝ |j − k|−4, 
and Δ = −n( )5 . Therefore, the scaling law of Δ cannot distinguish long and short range phases, and can only 
detect the actual critical line h = hc. Likewise, Δ does not identify the transition from the LRMC phase to the δ = 0 
and h = 0 lines.
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In Table 1, the MUC scaling law is compared with the scaling of ||J||∞, DetJ and Δ in each region of the phase 
diagram. Figure 1 clearly shows that  h| |δ  maps faithfully the phase diagram. A super-extensive behaviour of the 
MUC characterises the LRMC phase with a scaling U O| | =δ n( )h

2 , while in the short range phase the MUC is size 
independent. Thus, differently from Δ, the MUC discriminates these phases, with no need of crossing the critical 
line h = hc. Figure 2 shows that in the LRMC phase, the scaling law of the MUC saturates the upper bound (3), in 
contrast to the short range phase. This shows the striking different nature of the two phases. In the LRMC region, 
the system behaves as an inherently two-parameter quantum estimation model, where the parameter incompati-
bility cannot be neglected even in the thermodynamical limit. On the short-range phase, instead, the system is 

Phase Parameters Δ ||J||∞ DetJ | δh | Q

Critical h = 0 n−3 n6 n7 n3 n−1

Long range 0 < |h| < hc n−3 n3 n4 n2 n0

Critical
h hc n−5 n6 n7 n0 n−7

Short range h > hc n−3 n n2 n0 n−2

Critical δ = 0, |h| < hc n−3 n2 n8 n3 n−2

Table 1. Here we show a comparison between the scaling laws for: the dissipative gap Δ2, the largest eigenvalue 
||J||∞ of the quantum Fisher information matrix41, the determinant of J, the largest eigenvalue 

Deth  = | | =δ∞
 of the MUC, and the ratio = | |Q J: Det2 /Det  for each phase of the boundary driven 

XY model2. The ratio Q ≤ 1 when Q ~ n0 marks the condition of maximal asymptotic incompatibility.

Figure 1. The MUC | |δ h  for the boudary driven XY model, for n = 300. The qualitative behaviour of MUC 
maps the phase diagram quite faithfully. The discontinuity accross the critical line δ= = | − |h h : 1c

2  signals 
the transition between LRMC and short range phases. 0 3Lκ = .+ , 0 5Lκ = .− ,κ = .+ 0 1R , 0 5Rκ = .− . The qualitative 
features remains unchanged for different values of L R,κ ± .

Figure 2. Boundary driven XY model. Scaling laws of the determinants (main) and maximal eigenvalues 
(inset) of the quantum Fisher information matrix J and mean Uhlmann curvature   for different values of h, 
with δ = 1.25 and hc = |1 − δ2|. The laws do not depend on the particular values of the κ ±

R L, . The scalings are the 
results of fits on numerical data, with size ranging in n ∈ [20, 2000].
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asymptotically quasi-classical. The critical line δ = 0 (with |h| ≤ hc) and the critical line h = 0, which mark regions 
of short range correlations embedded in a LRMC phase, show a MUC which grows super-extensively, with scaling 

n( )3 , and a nearly saturated inequality (3). In the critical line h hc, despite the spectacular divergence of 
J n( )6

∞  , the scaling law of h| |δ  drops to a constant, revealing an asymptotic quasi-classical behaviour of the 
model at the phase transition.

Translationally invariant systems. An important subclass of quadratic Liouvillian Fermionic models 
are those enjoying the translational invariance symmetry. In such systems one can employ the whole wealth 
of powerful tools stemming out of the Fourier transform and work directly in the thermodynamical limit. This 
enables one to quantitatively define criticality in terms of singularities in the quasi-momentum space, thereby 
secluding the kinematics of the NESS-QPT from the dynamical properties of the model. The most natural notion 
of many-body criticality is in terms of diverging correlation length, which in a translationally invariant system is 
relatively straightforward to handle. This way of defining criticality enables one to bypass the difficulties arising 
from the ambiguous relation between NESS-QPTs and the vanishing dissipative gap.

The object of investigation is the covariance matrix, which in a translationally invariant system can be con-
veniently studied through its Fourier components. It is the non-analytical behaviour in the Fourier basis which 
conveys information on the long-wavelength limit, i.e. on the divergence of the correlation length.

Consider an explicit translationally invariant d-dimensional lattice of Fermions located at sites r L
d∈  , and 

assume finite (or quasi-finite) range interaction. The system size is n = Ld, and subsequently, one takes the ther-
modynamical limit L → ∞. One can define the covariance matrix over a discrete quasi-momentum space. 
However the considerations on the long-wavelength limit that will follow truly apply only at the thermodynami-
cal limit: hence divergences of correlation lengths manifest genuine quantum many-body effects.

In a translationally invariant chain, the Fermions can be labelled as ωr = (ωr,1, ωr,2)T, where ωr,β with β = 1, 2 are 
the two types of Majorana fermions on each site ∈r . The Hamiltonian can be written as  ω ω= ∑ −h r s( )r s r

T
s,  

and similarly the Lindbladians ωΛ = ∑ −α αlr s r( ) ( )s
T

s, where †= −h r h r( ) ( )  are 2 × 2 complex matrices and and 
∈αl r( ) 2 . Accordingly, the bath matrix can be expressed as [M](r,β)(s,β′) = [m(r − s)]ββ′, (β, β′ = 1, 2), where 

†= −m r m r( ) ( ) are the 2 × 2 matrices †l lm r s r s( ) : ( ) ( )s,= ∑ − ⊗α α α .
In the limit of infinite large system, both Hamiltonian and bath matrix are circulant. And the correlation 

matrix of the unique steady state solution is circulant, too: γ ρ ω ωΓ = − =β β ββ β β′ ′ ′r s[ ] [ ( )] : 1/2Tr [ , ]r s r s( , )( , ) , , . The 
Fourier component of the covariance matrix, called the covariance symbol, reads 


γ φ γ= ∑ φ− ⋅r e( ) : ( )r

i r , with 
φ ∈ [−π, π). In terms of the symbol functions, the continuous Lyapunov equation reduces to a set of 2 × 2 matrix 
equations

  
 

φ γ φ γ φ φ φ+ − =x x y( ) ( ) ( ) ( ) ( ), (7)T

where φ φ φ φ= + + −∼ ∼


x ih m m( ) 2[2 ( ) ( ) ( )]T  and y m m( ) 4[ ( ) ( )]Tφ φ φ= − − −∼ ∼  are the symbol functions of X 
and Y, respectively, and φh( ) , ˜ ˜ †

φ = ∑ ⊗∼
α α αl lm( )  and ˜ φαl ( ) are the Fourier components of h(r), m(r) and lα(r), 

respectively. Notice that l lm m( ) ( ) 0φ φ= = ∑ ⊗ ≥∼ ∼
α α α

˜ ˜† †  is a positive semidefinite matrix. The spatial correla-
tion between Majorana Fermions are then recovered from the inverse Fourier transform of the symbol function 

r d e( ) ( )d i r1
(2 )d d ∫γ φγ φ=

π
φ⋅ . Following54,70, here we will define criticality by the divergence of correlation 

length, which is defined as

r
r

: lim ln ( )
(8)r

1ξ
γ

= −
| |

.−

| |→∞

In the thermodynamical limt, the divergence may only arise as a consequence of the non-analytical depend-
ence of γ(r) on the system parameters. Let’s confine ourselves to the case of a one-dimensional Fermionic chain. 
In order to derive informations on the large distance behaviour of the correlations, it is convenient to express the 
integral of the inverse Fourier transform in the complex plane, though the analytical continuation eiφ → z. This 
results in the following expression for the correlation function

r z z( ) Res [ ( )],
(9)z S

z
r 1

1

∑γ γ=
∈

−

where Resz  indicates the residues of the poles inside the unit circle = || | ≤S z z: { 1}1 . Since γ z( )


 is the solution of 
a finite dimensional matrix equation (7), it may only possess simple poles. Thus, the above expression may 
become singular only when an isolated pole of z( )γ


 approaches the unit circle from the inside54,70. This may hap-

pen for some specific critical values λ λ= ∈0 . As λ approaches λ0 the correlation length ξ diverges. One can 
show that the long wave-length behaviour is governed by the closest pole to unit circle | |z0 , and indeed the corre-
lation length is given by ξ = | |zln 0 .

Mean Uhlmann Curvature and Criticality in Translationally Invariant Models. We will show that 
the MUC is sensitive to the criticality, but only in the sense of a truly diverging correlation length. Indeed one 
can show that the Uhlmann curvature is insensitive to the vanishing of the dissipative gap, if the latter, as it may 
happen, is not accompanied by a diverging correlation length. In this sense, the Uhlmann curvature confirms its 
role as a witness of the purely kinematic aspects of the criticality, and it is only indirectly affected by the dynamical 
features of the NESS-QPT.
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Thanks to the translational symmetry, one can exploit the formalism of Fourier transform and derive a quite 
compact expression of the MUC. By applying the convolution theorem on the equation (5), one obtains the fol-
lowing expression for the MUC per site

n
d u: lim 1

(2 )
( ),

(10)n



∫π

φ φ= =μν
μν

π

π

μν
→∞ −

where

u i i( ) :
4

Tr{ ( )[ ( ), ( )]}
4

Tr{ ( )[ ( ), ( )]}, (11) 
φ γ φ κ φ κ φ κ φ γ φ κ φ= =μν μ ν ν μ

In the above expression, κμ(φ) is the operator solution of the 2 × 2 discrete time Lyapunov equation

γ φ γ φ κ φ γ φ κ φ∂ = − .μ μ μ( ) ( ) ( ) ( ) ( ) (12)  

In the eigenbasis of ( )γ φ


, with eigenvalues 
jγ , the explicit solution of (12) reads 



κ φ =μ
γ φ

γ γ

∂

−
μ( ( ))jk

( ( ))

1
jk

j k

. Notice 

that the diagonal terms (κμ(φ))jj provide vanishing contributions to eq. (11) (they commute with ( )γ φ


). Hence, 
eq. (11) can be cast in the following basis independent form

φ
γ φ γ φ γ φ

γ φ
γ φ

γ φ

=










∂ ∂

−
≠

=

.μν

μ ν{ }
u

i
( ) 4

Tr ( )[ ( ), ( )]

[1 Det ( )]
Det ( ) 1

0 Det ( ) 1 (13)

2

~ ~ ~

~
~

~

Notice that the condition Det ( ) 1

γ φ =  is equivalent to having two eigenvalues of correlation matrix equal to 

(γi, γk) = ±(1, 1). Such extremal values cause no singularity in MUC, but result in a vanishing contribution to the 
MUC.

In Methods, we will demonstrate that a singularity of   signals the occurrence of a criticality. Specifically, 
employing the analytical extension in the complex plane of uμν(φ) leads to

∑= .μν μν
′∈

′
−z u zRes [ ( )]

(14)z S
z

1

1



Notice that uμν(z) has at most isolated poles, due to its rational dependence on z. Assume that as λ λ→ ∈0 , 
a pole z0 of uμν(z) approaches the unit circle from inside, which is the only condition under which   is singular in 
λ0. One can show that, whenever a pole z0 of uμν(z) approaches the unit circle, also a pole z  of γ z( )


 approaches the 

same value, causing the correlation length to diverge. Therefore the singular behaviour of the Uhlmann phase 
necessarily represents a sufficient criterion for a NESS-QPT. Notice also (see Methods) that such criticalities are 
necessarily accompanied by the closure of the dissipative gap, however, the converse is in general not true. Indeed, 
a vanishing dissipative gap is not a sufficient condition for criticality, but only necessary. This fact can be readily 
checked with the model discussed in the next subsection, which shows a closing dissipative gap without the 
occurrence of a diverging correlation length.

Moreover, a singularity in the MUC may only arise as the result of criticality and are otherwise insensitive to a 
vanishing dissipative gaps. These features are exemplified in the following translational invariant dissipative fer-
mionic chain: the rotated XY model with periodic boundary conditions25,26, H R H R( ) ( )XY

†θ θ= , with 
θ = σ− ∑θ

R e( ) i j j
z

2  and

H 1
2

1
2

,
(15)

XY
j

n

j
x

j
x

j
y

j
y

j
z

1
1 1∑ δ σ σ δ σ σ λσ=





+
+

−
+





=
+ +

where each site j is coupled to two local reservoirs with Lindblad operators εμσΛ =± ±
j j . The spin-system is con-

verted into a quadratic fermionic model via Jordan-Wigner transformations. The Liouvillian spectrum can be 
solved exactly2,64,68 and it is independent of θ. In the weak coupling limit ε → 0, the symbol function of the NESS 
correlation matrix reads 


γ σγ φ = ⋅( ) T , where : ( , , )x y z

Tσ σ σ σ= , and γ φ θ φ θ= −g t t[ ( )cos , 1, ( ) sin ]T , with 
= ν μ

ν μ φ

−

+ +
g

t
1

1 ( )

2 2

2 2 2  and t h( ) : sin /(cos )φ δ φ φ= − . The system shows criticality in the same critical regions of the 
XY hamiltonian model68. By using expression (14) we can calculate the exact values of the mean Uhlmann curva-
ture. We find that  hδ  vanishes, while δθ  and θh  are plotted in Fig. 3. As predicted, the Uhlmann curvature 
shows a singular behaviour only across criticality. In particular,  θh  is discontinuous in the XY critical points 
|h| = 1, while δθ is discontinuous in the XX type criticalities δ = 0, h < 1.

A model with closing dissipative gap without criticality. In this section we will show an example of a 
1D fermionic dissipative system in which the closure of the dissipative gap does not necessarily lead to a diverging 
correlation length. Consider a chain of fermions on a ring geometry, with no Hamiltonian and a reservoir defined 
by the following set of Lindblad operators

ω ω ωλ λ λΛ = + + ++ +l l lr n( ) [(1 ) ]/ ( ),T
r

T
r

T
r0 1 1 2 2
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where r = 1, …, n, l0 = (cos θ, −sin θ)T, l1 = l2 = i(sin θ, cos θ)T, and n(λ) = 4(λ2 + λ + 1), with λ ∈ , θ = [0, 2π). 
This is a simple extension of a model introduced in71, which, under open boundary conditions, shows a dissipa-
tive topological phase transition for λ = ±1. In the thermodynamical limit n → ∞, the eigenvalues of  φx( ) are 
x1 = 4(1 + λ)2/n(λ)2, and x2 = 4(1 + 2λ cos φ + λ2)/n(λ)2, showing a closure of the dissipative gap at λ = ±1. For 
|λ| ≠ 1 the unique NESS is found by solving the continuous Lyapunov equation (7). The symbol function, in a 
Pauli matrix representation, results 


( ) γ σγ φ = ⋅ , with

g( )
(sin sin 2 ) cos 2

(cos cos 2 )
(sin sin 2 ) sin 2

,γ φ
φ λ φ θ

φ λ φ
φ λ φ θ

=









+
+

− +










where g(φ) = (1 + λ)/(1 + λ + λ cos φ + λ2), with eigenvalues ± φ λ λ φ+ +g( ) 1 2 cos2 . This shows that γ


 is 
critical in the sense of diverging correlation, only for λ = −1 and not for λ = 1, even if the dissipative gap closes in 
both cases. Figure 4 shows the dependence of the inverse correlation length of the bulk, the dissipative gap and the 
mean Uhlmann curvature λφ  on the parameter λ. Notice a discontinuity of the Uhlmann phase corresponding 
to the critical point λ0 = −1, while it does not show any singularity for λ = 1 where the gap closes.

Discussion
We have introduced an entirely novel approach to quantitatively assess the “quantum-ness” of critical phenomena. 
To this end, we resorted to ideas borrowed from quantum estimation theory, which endow the geometric phase 
approach with an operationally well defined character. The geometrical interpretation offers an intuitive explana-
tion as to why singularities of MUC emerge in criticalities, and leads to a unified interpretation for equilibrium 
and out-of-equilibrium QPTs. In quantum metrology, the MUC accounts for the discrepancy between an inher-
ently quantum and a quasi-classical multi-parameter estimation problem, shading a new light onto the nature of 
correlations in NESS-QPTs. We have explored the properties of the MUC in the physically relevant class of dissi-
pative NESS-QPTs exhibited by quadratic fermionic Liouvillian models. A relation between the singular behav-
iour of the MUC and the criticality has been analytically demonstrated. We have employed specific prototypical 
models, showing that the scaling laws and the singularities of   map faithfully the phase diagrams. This approach 
goes well beyond the application to the important class of quadratic dissipative models analysed here, and 

Figure 3. The mean Uhlmann curvature per number of sites   for the rotated XY model with local reservoirs. 
The dependence of θh  (left) and of δθ  (right) on the parameters δ and h. The mean Uhlmann curvature shows 
a singular behaviour in the critical regions of the model. hθ is discontinuous in the XY critical points |h| = 1, 
and δθ is discontinuous in the XX type criticalities δ = 0, |h| < 1.

Figure 4. Model of a 1D fermionic chain on a ring showing a closing dissipative gap that does not imply a 
diverging correlation length. This is the model discussed in the last subsection of Results, which is a simple 
extension of a model introduced in71. The inverse correlation length, the dissipative gap and the MUC are 
shown, respectevely, from the left to the right panel. The model is critical only for λ = −1, while the gap closes 
for both λ = ±1. As expected, the discontinuity of MUC captures the criticality, and it is otherwise insensitive to 
a vanishing gap.
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introduces a tool suitable for the systematic investigation of out-of-equilibrium quantum critical phenomena. It 
immediately extends to phase transitions with and without order parameters, quenched dynamics in open and 
closed systems, topological dissipative phase transitions, dynamical critical phenomena. Moreover, this idea is 
also a promising tool which may glean insight on the interplay between competing orders both in equilibrium 
and non-equilibrium QPTs.

Methods
Uhlmann geometric phase and mean Uhlmann curvature. Here we will briefly review the idea of the 
Uhlmann geometric phase, and derive the expression of the mean Uhlmann curvature as a function of the sym-
metric logarithmic derivatives (SLDs). Given a density operator ρ acting on a Hilbert space  of dimension n, an 
exteded Hilbert space is defined by attaching an ancilla a: = ⊗  a

ext . A purification is defined as any pure 
state ψ ∈  such that ρ = Tra|ψ〉〈ψ|, where Tra is the partial trace over the ancilla. A standard choice for a is the 
dual of , then ext  becomes the space of operator w over , with Hilbert-Schmidt scalar product 
w v w v( , ) : Tr( )†= . Hence, a purification can be equivalently expressed in terms of any Hilbert-Schmidt operators 

w, called amplitudes, such that

ww (16)†ρ =

The above equation, leaves a gauge freedom U(n) in the choice of w, as any w′ = wU is an amplitude of the 
same ρ. Indeed, from the polar decomposition theorem we can always uniquely parametrise an amplitude as 

ρ=w U.
Given a pure state ψ, a similar U(1) gauge freedom is obtained by the simple observation that any ψ = eiϕψ′ 

represents the same element of the projective Hilbert space. Let |ψλ〉〈ψλ| be a family of pure states parameterised 
by λ ∈ , and let t t T: { ( ) , [0, ]}γ λ= ∈ ∈  be a smooth closed path in the parameter manyfold . Given 
such a family we can choose any representative trajectory et

i t
t( )

( )
( )ψ ψ=λ

ϕ
λ
′  in the Hilbert space. If the trajectory 

chosen fulfils the prescription of parallel transport, i.e. 0t
d
dt t( ) ( )ψ ψ〈 | | 〉 =λ λ , then the phase difference ϕB between 

initial and final state ψ ψ| 〉 = | 〉λ
ϕ

λeT
i

( ) (0)
B

 is purely geometric in nature, i.e. it solely depends on the path γ, regard-
less of parameterisation and re-gauging. This phase is called Berry phase and its value reads ∮ϕ =

γ
AB B, where 

λ= ∑μ μ μA A d:B B  is the Berry connection one-form, whose components are ψ ψ= 〈 |∂ | 〉μ λ μ λA i:B , where 
: / λ∂ = ∂ ∂μ μ. By exploiting the Stokes theorem, we can convert the loop integral of AB to an integral FB

S
B∫ϕ =  

over a surface S bounded by the path γ, where λ λ= = ∑ ∧μν μν μ νF dA F d d:B B B1
2

 is the Berry curvature two-form, 
whose components are = ∂ − ∂μν μ ν ν μF A A:B B B. The parallel transport condition is equivalent to choose the repre-
sentative path ψλ(t) that minimizes the length of the path on the Hilbert space measure by ∫ τ ψ τ ψ τ= 〈 | 〉l d ( ) ( )T

0
  .

Similarly, we can have a smooth closed trajectory of density matrices, ρλ(t), parametrised by a path γ: 
λ ∈ t( ) , t ∈ [0, T], and, correspondingly, a path of Hilbert-Schmidt operators wλ(t) in ext. The choice of ampli-
tudes is quite redundant due to the local U(n) gauge freedom. Similarly to the pure state case, this redundancy can 
be mitigated by imposing the so called Uhlmann parallel transport condition, which prescribes that, given any 
two ρ1 and ρ2, their respective amplitudes w1 and w2 are parallel whenever

= ≥ .w w w w 0 (17)1 2 2 1
† †

This equivalently means that the chosen w1 and w2 are those that maximise their Hilbert Schmidt scalar prod-
uct =w w w w( , ) : Tr( )1 2 1 2

† , i.e.

 ρ ρ= =′
′

w w w w( , ) max ( , ) : ( , )
w

1 2 1 2 1 2
2

where the maximum is taken over all w 2′  purifying ρ2. The above maximal value depends on ρ1 and ρ2 only, and it 
is equal to ( , ) Tr1 2 1 2 1ρ ρ ρ ρ ρ= , the so called Uhlmann fidelity of ρ1 and ρ2. Through the fidelity one can 
define a geometric measure of statistical indistinguishability between states ρ1 and ρ2

16, the Bures distance

d ( , ) : 2[1 ( , )]B
2

1 2 1 2ρ ρ ρ ρ= − .

which, for infinitesimally closed states, defines a Riemannian metrics on the manifold of density operators, the 
Bures metrics

g d d d: ( , )B d
2∑ λ λ ρ ρ= .

μν

μν
μ μ λ λ λ+

Applied to any two neighbouring points wλ(t) and wλ(t+dt) of a smooth path of amplitudes, the parallel transport 
condition (17) becomes

 w w w w 0, (18)† †− =

where dots denote derivatives with respect to t. The maximisation of the overlap (wλ(t), wλ(t+dt)) is equivalent to the 
minimisation of the “velocity”  v w w: ( , )= , which in turns means that the path of amplitudes fullfilling the 
Uhlmann condition are those with the shortest length, measured by ∫ τ= λ τ λ τ l d w w: ( , )T

0 ( ) ( ) .
According to56, the parallel transport condition (18) is fullfilled by the following ansatz
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= = .˙ †w L w L L1
2

, (19)t t t

Lt can be determined by differentiating wwρ = † and inserting (19), which yields

ρ ρ= L1
2

{ , }, (20)t

where {., .} is the anticommutator. Lt, known as the symmetric logarithmic derivative (SLD), is implicitly defined 
as the (unique) operator solution of (20) with the auxiliary requirement that 〈ψ|Lt|ψ〉 = 0, whenever ρ|ψ〉 = 0. As 
already mentioned, as far as the definition of the SLD is concerned, we will actually confine ourselves to full-rank 
density matrices. In the case of singular density matrices, quantities of interest to us can be calculated consistently 
by a limiting procedure from the set of full rank matrices. In terms of Lt, the “velocity” can be cast as 

ρ= =v ww L LTr( ) 1/2 Tr[ ]t t˙ ˙ † , which in turn means that the Bures metrics can be expressed in the following 
form

ρ=μν μ ν( )g L L1
8

Tr { , } (21)

where Lμ is the restriction of Lt along the coordinate λμ, and it is determined by the analog of equation (20), 
ρ ρ∂ =μ μL{ , }1

2
, where ( : / λ∂ = ∂ ∂μ μ). We can also define the operator-valued differential one-form 

L L d: λ= ∑μ μ μ. In the closed path ρλ(t), initial and final amplitudes are related by a unitary transformation, i.e. 
wλ(T) = wλ(0)Vγ. If the path of amplitudes wλ(t) fullfills the Uhlmann condition, Vγ is a holonomy, the non-Abelian 
generalisation of Berry phase13. The holonomy is expressed as ∮=γ γV ei A, where   is the path ordering operator 
and A is the Uhlmann connection one-form. The Uhlmann connection can be derived from the following ansatz56

+ =dw iwA Lw1
2 (22)

which is the generalisation of (19) when the parallel transport condition is lifted. By differentiating †wwρ =  and 
using the defining property of the SLD (see eq. (20)), it follows that A is Hermitian and it is implicitly defined by 
the equation

Aw w w wA i w dw dw w( ),† † † †+ = −

with the auxiliary constraint that 〈ψ′|A|ψ′〉 = 0, for w|ψ′〉 = 0. From eq. (22), it can be checked that A obeys the 
expected transformation rule of non-Abelian gauge potentials, A U AU iU dUt t t t→ +† †  under wt → wtUt, and that 
L is gauge invariant.

The analog of the Berry curvature, the Uhlmann curvature two-form, is defined as = − ∧ =F dA iA A:
λ λ∑ ∧μν μν μ νF d d1

2
. Its components Fμν = ∂μAν − ∂νAμ − i[Aμ, Aν] can be understood in terms of the Uhlmann 

holonomy per unit area associated to an infinitesimal loop in the parameter space. Indeed, for an infinitesimal 
parallelogram γμν, spanned by two independent directions δμ μê  and ê δν ν  in the manifold, it reads

δ δ
=

−
μν

δ

γ

μ ν→

μ νF i
V

lim
1

,
0

,

where δ → 0 is a shorthand of (δμ, δν) → (0, 0).
As already mentioned, the Uhlmann geometric phase is defined as

w w w w[ ] : arg( , ) arg Tr( ), (23)U
T T(0) ( ) (0) ( )ϕ γ = =λ λ λ λ

†

and the Uhlmann phase per unit area for an infinitesimal loop reads


ϕ γ

δ δ
= = .μν

δ

μν

μ ν
λ λ μν

→

†( )w w F: lim
[ ]

Tr
U

0
(0) (0)

We called the latter mean Uhlmann curvature (MUC), on account of the expression F FTr( )ρ= = 〈 〉μν μν μν  
that   takes in the special gauge w (0)0 ρ= .

By taking the external derivative of the expression (22) and by using the property d2 = 0, it can be shown that56

= ∧ −wF i L L dL w
4

( 2 ) , (24)

= ∧ + .Fw i w L L dL
4

( 2 ) (25)
† †

Multiplying the above expressions by w† and w, respectively, and taking the trace yields
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ρ= = ∧† ( )wFw i L LTr( )
4

Tr , (26)

where d d: 1/2 λ λ= ∑ ∧μν μν μ ν   is a real-valued two-form, whose components are ρ=μν μ ν ( )L LTr [ , ]i
4

. The 
expressions of (21) and (26) reveal the common mathematical structure of MUC and metric tensor, which can be 
merged into a Hermitian matrix

ρ=μν μ ν( )I L L: Tr , (27)

called the quantum Fisher tensor (QFT)72, such that gμν = Re(Iμν)/4 and = −μν μνIIm( )/2 .

Fermionic Gaussian states. We will specialize our considerations to the case of systems described by fer-
mionic Gaussian states. The fermionic Gaussian states are defined as density matrices ρ that can be expressed as

e Z Z e: / , : Tr (28)
i i
4 4

T T
ρ = = .ω ω ω ω− Ω − Ω

Here Ω is a 2n × 2n real antisymmetric matrix, and ω ω ω= …: ( )n
T

1 2  is a vector of 2n Majorana fermion 
operators, defined as: c c:k k k2 1ω = +−

†, †i c c: ( )k k k2ω = − , with k = 1 … n, where ck and ck
† are annihilation and 

creation operators of standard fermions, respectively. The anticommutation relations of the Majorana fermion 
operators read {ωj, ωk} = 2δjk. The Gaussian state is completely specified by the two-point correlation matrix 

ρ ω ωΓ =: 1/2Tr( [ , ])jk j k , which is an imaginary antisymmetric matrix. One can show that Γ and Ω can be simul-
taneously cast in a canonical form by an orthogonal matrix Q

γ
γ

Γ = ⊕



−






Ω = ⊕





Ω
−Ω




= =

Q
i

i Q Q Q
0

0 ,
0

0
,

k

n k

k

T

k

n k

k

T

1 1

and their eigenvalues are related by γj = tanh(Ωj/2), which implies that |γj| ≤ 1. Correspondingly, the density 
matrix can be factorised as

∏ρ
γ

=
− | |

=

−i z z1
2

,
k

n
k k k

1

2 1 2

where ω= … =z z z Q( , , ) :n
T

1 2  are the Majorana fermions in the eigenmode representation. Notice that |γk| = 1 
corresponds to the fermionic mode = +−c z z1/2( )k k k2 1 2  being in a pure state.

For a Gaussian fermionic state, all odd-order correlation functions are zero, and all even-order correlations, 
higher than two, can be obtained from Γ by Wick’s theorem73, i.e. Tr( ) Pf( )k k k k k kp p1 2 2 1 2 2

ρω ω ω… = Γ … , where 
k k n1 2p1 2≤ < < ≤  and Γ …k k k p1 2 2

 is the corresponding 2p ×  2p submatrix of Γ . Pf( )k k k
2

p1 2 2
Γ =…

detPf( )k k k p1 2 2
Γ …  is the Pfaffian. An especially useful case is the four-point correlation function

ρω ω ω ω = − +a a a a a aTr( ) , (29)j k l m jk lm jl km jm kl

where a :jk jk jkδ= Γ + . We would like to derive a convenient expression for the QFT for Gaussian fermionic states. 
In order to do this, we first derive the SLD in terms of correlation matrix Γ. Due to the quadratic dependence of 
(28) in ω, and following the arguments of74, it can be shown that L is a quadratic polynomial in the Majorana 
fermions

L K: 1
2

, (30)
T Tω ω ζ ω η= ⋅ + +

where λ= ∑μ μ μK K d , with Kμ a 2n × 2n hermitian antisymmetric matrix, ζ = ζμdλμ, with ζμ a 2n real vector, and 
η = ημdλμ a real valued one-form. From the property that Tr(ρωk) = 0 for any 1 ≤ k ≤ 2n, it is straightforward to 
show that the linear term in (30) is identically zero

( ) ( )d L0 Tr( ) 1
2

Tr { , } 1
2

Tr { , }k k
T

k
kζ ωω ρ ω ρ ρ ω ζ= = = = .

where ζk is the k-th component of ζ, and in the third equality we took into account that the odd order correlations 
vanish. The quantity η can be determined from the trace preserving condition Tr(dρ) = Tr(ρL) = 0

K K1
2

Tr( ) 1
2

Tr( ) (31)
Tω ωη ρ= − = ⋅ Γ .

In order to determine K, we take the differential of Γjk = 1/2Tr(ρ[ωj, ωk])
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∑

ω ω

ρ ω ω ρ ω ω

ρ ω ω η ρ ω ω

ρ ω ω ω ω η

η

Γ = =

= +

= + Γ

= Γ Γ − +






− ⋅ Γ





Γ

d d L

K

K

K K K

1
2

Tr( [ , ]) 1
4

Tr({ , }[ , ])

1
8

Tr({ , }[ , ]) 1
2

Tr( [ , ])

1
16

Tr( {[ , ][ , ]})

( ) 1
2

Tr( ) ,
(32)

jk j k j k

T
j k j k

lm

lm
l m j k jk

jk jk

where the last equality is obtained with the help of eq. (29) and using the antisymmetry of Γ and K. Finally, 
according to eq. (31), the last term vanishes and we obtain the following (discrete time) Lyapunov equation

Γ = Γ Γ − .d K K (33)

The above equation can be formally solved by

K d1( Ad ) ( ),1= − − ΓΓ
−

where X XAd ( ) := Γ ΓΓ
† is the adjoint action. In the eigenbasis of Γ it reads

⟨ ⟩K
d d j dk( )
( )

1 2
tanh

2
,

(34)
jk

jk

j k

k
jk

j k

γ γ
δ= −

Γ

−
= −

Ω
+





Ω − Ω 




|

where, in the second equality, we made use of the relation γk = tanh(Ωk/2), which yields the following diagonal 
d d( ) (1 )jj j j

2γΓ = − Ω  and off-diagonal terms (dΓ)jk = (γk − γj)〈j|dk〉. This expression is well defined everywhere 
except for γj = γk = ±1, where the Gaussian state ρ becomes singular (i.e. it is not full rank). In this condition, the 
expression (34) for the SLDs may become singular. Nevertheless, the boundness of the function ≤

Ω − Ω
tanh 1

2
j k  

in (34) shows that such a singularity is relatively benign. Thanks to this, we can show that the condition 
γj = γk = ±1 produces, at most, removable singularities in the QFT (cf.57). This allows the QFT to be extended by 
continuity from the set of full-rank density matrices to the submanifolds with γj = γk = ±1.

Knowing the expression for the SLDs, we can calculate the QFT by plugging L K K[ Tr( )]T1
2

ω ω= − ⋅ Γμ μ μ  
into I L L: Tr( )ρ=μν ν μ . Making use of (29) and exploiting the antisymmetry of both Γ and K leads to

I K K

K K

1 11
2

Tr[( ) ( ) ]

1
2

(1 ) (1 )

1
2

(1 ) (1 )

(1 )
( ) ( ) ,

(35)

jk
j k jk kj

jk

j k

j k
jk kj2

∑

∑

γ γ

γ γ

γ γ

= + Γ − Γ

= + −

=
+ −

−
∂ Γ ∂ Γ

μν μ ν

μ ν

where the last equality is obtained by plugging in eq. (34). Let’s have a closer look at the QFT in the limit of (γj, 
γk) → ±(1, 1). The boundness Kjk, and the multiplicative factors (1 ± γj) in (35) causes each term with |γj| → 1 to 
vanish. This means that the QFT has a well defined value in the above limit, and we can safely extend by continuity 
the QTF to the sub-manifolds (γj, γk) = ±(1, 1). The explicit expression of Iμν produces the following results for 
the Bures metrics

g I K K K K KRe1
4

( ) 1
8

Tr( ) 1
8

Tr( ) 1
8

( ) ( )
1

,
(36)jk

jk kj

j k
∑ γ γ

= = − Γ Γ = − ∂ Γ =
∂ Γ ∂ Γ

−μν μν μ ν μ ν μ ν
μ ν

which was already derived by Banchi et al.41. For the MUC the explicit expression is

I i K K iIm1
2

( )
4

Tr( [ , ])
4 (1 )

( ) ( ) ,
(37)jk

k j

j k
jk kj2∑

γ γ

γ γ
= − = Γ =

−

−
∂ Γ ∂ Γμν μν μ ν μ ν

which, in a parameter-independent way, reads

= Γ ∧ . i K K
4

Tr( ) (38)

Sufficient condition for criticality in translationally invariant dissipative models. In this section 
we will show that a singular dependence of   on the parameters λ ∈  necessarily implies a criticality, strictly in 
the sense of a diverging correlation length.

Let’s now prove that, in translationally invariant models, a vanishing dissipative gap is a necessary condition 
for criticality.
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Proposition 1. If there exists a pole z ( )0 λ  of 

γ z( ), smoothly dependent of system parameters λ ∈ , such that 

zlim 100
| | =λ λ→ , then

λ λΔ = = = .| |= x z forRe: 2min ( ) 0z j j1, 0

Proof. Under the vectorising isomorphism, = | 〉〈 | → = | 〉 ⊗ | 〉A a j k A a j kvec( ):jk jk , the continuous Lyapunov 
equation (7) can be written as

ˆ


X z z y z( )vec( ( )) vec( ( )), (39)γ =

where ˆ = ⊗ + ⊗ −X z x z x z1 1( ) : ( ) ( )1 . When ≠X̂ zDet ( ) 0, the unique solution of the symbol function is found 
simply as

ˆγ η η= = .z z
d z

X yvec( ( )) vec( ( ))
( )

, where vec( ): adj( )vec( )
(40)

Here Xadj( )ˆ  stands for the adjugate matrix of X̂  and d z X z( ) : Det ( )ˆ= . The point in writing the solution in this 
form, is that by construction, x(z) and y(z) are polynomials in z and z−1 with coefficients smoothly dependent on 
system parameters. Since determinant and adjugate matrix are always polynomial functions of matrix coeffi-
cients, it results that also η(z) and d(z) will be two polynomials in z and z−1. Hence, z( )γ


’s poles are to be found 

among the roots z  of d(z) = 0. Thus, a necessary condition for criticality is that, for λ → λ0, a given root z  
approaches the unit circle S1. This clearly means that for λ = λ0, there must exists z0 such that | | =z 10  and 

ˆd z X z( ) Det ( ) 00= = , which implies a vanishing dissipative gap x zRe: 2min ( )z j j1,Δ = | |= , where xj(z)’s are the 
eigenvalues of x z( )64.◻

We will next show that a singular behaviour of   with respect to the parameters is a sufficient condition for 
criticality. First of all, notice, from the equation (13), that u(φ) may depend on the dynamics only through γ~. 
Hence any closure of the gap which does not affect the analytical properties of 


γ  cannot result in a singular behav-

iour of   (see also proposition 2 in the following). We will just need to show that a necessary condition for a sin-
gular behaviour of u(φ) is Δ = 0.

Indeed, let’s now show that the poles of uμν(z) with |z| = 1 are to be found only among the roots of d(z). 
Assuming d(z) ≠ 0, and plugging the unique solution (40) into equation (13) leads to

η η η

η
= =

∂ ∂

−μν
μ νu z N z

D z
i d z z z z

d z z
( ) ( )

( ) 4
( )Tr{ ( )[ ( ), ( )]}

( ( ) Det ( ))
,2 2

where the numerator N(z) and denominator D(z) are polynomials in z and z−1 with smooth dependence on λ’s. 
We will demonstrate the following:

 (i) that all roots of d(z) such that |z| = 1 are also roots of D(z);
 (ii) that any other roots of D(z), such that |z| = 1, are not poles of uμν(z).

For the statement (i), it is just enough to prove the following lemma.

Lemma 1. If d(z) = 0 with |z| = 1, then η(z) = 0.

Proof. For |z| = 1, let’s write explicitly z = eiφ. It is not hard to show that from its definition, the matrix x( )φ  enjoys 
the following property φ φ= − x x( ) ( )T† . Correspondingly, the eigenvalues of X̂ are ⁎x xj k+  with j, k = 1, 2, where 
xj are the eigenvalues of x( )φ . Since Rexj ≥ 0, XDet 0ˆ =  implies that there must exist an eigenvalue x0 of x( )φ  with 
vanishing real part, hence x xRe Re2min 2 0j j 0Δ = = = . If |0〉 is the eigenstate of  φx( ) with eigenvalue x0, then

 φ φ φ φ+ = 〈 | + − | 〉 = 〈 | + − | 〉 =∼ ∼⁎x x x x m m0 ( ) ( ) 0 4 0 ( ) ( ) 0 0 , (41)T T
0 0

where in the second equality we used the definition of x ih m m( ) : 2[2 ( ) ( ) ( )]Tφ φ φ φ= + + −∼ ∼


  and the antisym-
met r y   φ φ= − −h h( ) ( )T .  From t he  non-negat iv i ty  of  t he  m( )φ∼  mat r ices ,  i t  fo l lows  t hat 
y m m0 ( ) 0 4 0 ( ) ( ) 0 0Tφ φ φ〈 | | 〉 = − 〈 | − − | 〉 =∼ ∼ . In66 it is shown that when 2Rex0 = 0, the geometric multiplicity of 

x0 is equal to its algebraic multiplicity, hence the 2 × 2 matrix x( )φ  is diagonalisable. Then, let |j〉 be the set of 
eigenstates with eigenvalues xj. In the eigenbasis | 〉 ⊗ | 〉j k , j, k = 0, 1 the adjugate matrix has the following diagonal 
form,

^ =







| + |
+

+

| + |







∗

∗

∗

∗

X

x x x
x x x x

x x x x
x x x

Re
Re

Re
Re

adj( ) 2

( ) 0 0 0
0 2( ) ( ) 0 0
0 0 2( ) ( ) 0
0 0 0 ( )

0 1
2

1

0 1 1 0

1 0 1 0

1 0
2

0
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and due to Rex0 = 0, all elements, but 〈 | | 〉X0, 0 adj( ) 0, 0ˆ , vanish. On the other hand, the element 
 = 〈 | | 〉 =y yvec( ) : 0 0 000 , implying ˆη = =X yvec( ) adj( )vec( ) 0.             ◻

To prove statement (ii), we just need the following proposition.

Proposition 2. If z0 is a root of D(z) with | | =z 10 , and ≠d z( ) 00 , then uμν(z) is analytic in z0.

Proof. Let z0 be a root of D(z) with | | =z 10 , with the assumption that ≠d z( ) 00 . Notice that whenever d(z) ≠ 0, 


z( )γ  in (40) is the unique solution of the Lyapunov equation (7). As such, it is analytic in z (and smoothly depend-
ent on λ’s). Since

D z d z z d z z( ) : ( ( ) Det ( )) ( ) [1 Det ( )] , (42)2 2 4 2η γ= − = −


we obviously have γ =zDet ( ) 10

. Just observe that if γ(z) is an analytic, smoothly dependent on the system 
parameters λ ∈ , uμν(z) may be singular in z0 only if 


zDet ( ) 10γ = . Assume then zDet ( ) 10γ =



, then either 
z 1( )0γ = ± . Without loss of generality, we can write z T z z z z1( ) ( ) ( )n n

0
2

0
2γ = + − + −



, n ∈ , where 
= †T T  is the first non-vanishing term of the Taylor expansion of γ −z 1( )


. The fact that this term must be of 

even order (2n) is due to the positive semi-definiteness of the z1 ( )γ−


 for z ∈ S1. By expressing the 2 × 2 matrix 
T in terms of Pauli matrices, σ= + ⋅tT t 10 , where σ σ σ σ=: ( , , )x y z

T , ∈t0  and ∈t 3 , the positive 
semi-definiteness condition above reads: t0 < 0 and ||t|| ≤ |t0|. Plugging the Taylor expansion in (13) and retaining 
only the first non-vanishing terms, yields          ◻

= −
⋅ ∂ ∧ ∂

− + − .μν
μ νt t t

u z
t

z z o z z( ) 1
4

( )
( ) ( )n n

0
2 0

2
0

2

We have thus proven that a non-analycity of uμν(z) in ∈z S0 1 is necessarily due to a pole z  of 

γ z( ) approaching 

z0, as λ → λ0, resulting in a diverging correlation length. Therefore, a singular behaviour of   in the manifold  
is a sufficient criterion for criticality.

The Mean Uhlmann Curvature and the quantum Fisher information matrix. As mentioned ear-
lier, an important interpretation of   comes in the context of quantum metrology. The inverse J−1 of the quan-
tum Fisher Information matrix (FIM), ρ=μν μ νJ L LTr { , }1

2
, sets the quantum Cramér-Rao bound (CRB)58,59, i.e. a 

bound on the estimation precision of the parameters λ ∈  labelling a quantum state, i.e.

λ̂ ≥ −JCov( ) , (43)1

where λ λ λ λ λ= 〈 − − 〉μν μ μ ν ν
ˆ ˆ ˆCov( ) ( )( )  is the covariance matrix of a set of locally unbiased estimators λ̂  of the 

λ’s. The expression (43) should be understood as a matrix inequality. In general, one writes

λ ≥ −G GJtr( Cov( )) tr( ),1ˆ

where G is a given positive definite cost matrix, which allows the uncertainty cost of different parameters to be 
weighed unevenly. In the case of the estimation of a single parameter λμ, the above inequality can always be satu-
rated, with the optimal measurement protocol being the projective measurement in the eigenbasis of the symmet-
ric logarithmic derivative Lμ. However, in the multi-parameter scenario, the CRB cannot always be saturated. 
Intuitively, this is due to the incompatibility of the optimal measurements for different parameters. A sufficient 
condition for the saturation is indeed [Lμ, Lν] = 0, which is however not a necessary condition. Within the com-
prehensive framework of quantum local asymptotic normality (QLAN)60–62, a necessary and sufficient condition 
for the saturation of the multi-parameter CRB is given by =μν 0 for all μ and ν53.

Here, we show explicitly that μν  provides a figure of merit for the discrepancy between an attainable 
multi-parameter bound and the single parameter CRB quantified by J−1. We will confine ourself to the broad 
framework of QLAN, in which the attainable multi-parameter bound is given by the so called Holevo Cramer-Rao 
bound (HCRB)58,59. For a N-parameter model, the HCRB can be expressed as60

G C Gtr( Cov( )) ( ), (44)Hλ ≥ˆ

where

= + .
μ

{ }C G G Z G ZRe Im( ) : min tr( ) ( )
(45)H

X{ }
1 

The N × N Hermitian matrix is defined as Z X X: Tr( )ρ=μν μ ν , where {Xμ} is an array of N Hermitian operators 
on  satisfying the unbiasedness conditions Tr(ρXμ) = 0 μ∀  and X X LTr( ) Tr { , }1

2
ρ ρ δ∂ = =μ ν μ ν μν  μ ν∀ , , and 

||B||1 denotes the sum of all singular values of B. If one chooses for {Xμ} the array of operators = ∑
∼

μ ν μν ν
−X J L: [ ]1 , 

it yields

= = = −
∼ − − − − −Z Z J IJ J i J J: 2 , (46)1 1 1 1 1
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where ρ=μν μ νI L L: Tr  is the quantum Fisher tensor, and  , with a little abuse of formalism, is the matrix of ele-
ments ρ=μν μ νL LTr [ , ]i

4
 . If one indicates by = − −G C G GJ( ) : ( ) tr( )H

1  the discrepancy between the attaina-
ble multi-parameter HCRB and the CRB, then  G( ) is bounded as follows

≤ ≤ − −G G J J0 ( ) 2 , (47)
1 1

1D U

where the first inequality is saturated iff  0= 53.
For the special case of a two-parameter model, in the eigenbasis of J, with eigenvalues j1 and j2, it holds

=















−

















=






−







.− −
−

−

−

−
J J

j

j

j

j
J

J

0

0
0

0
0

0

0
Det

Det
0

(48)

1 1 1
1

2
1

12

12

1
1

2
1

12

12









It follows that

 G J J G
J

2 2 Det Det 2
Det (49)

1 1
1  = .− −

Hence, in this case JDet2 /Det  provides a figure of merit which measures the amount of incompatibility 
between two independent parameters in a quantum two-parameter model.

For self-adjoint operators B1, …, BN, the Schrodinger-Robertson’s uncertainty principle is the inequality75

ρ ρ











≥





−





µ ν

µ ν
µ ν

µ ν= =
B B i B BDet 1

2
Tr( { , }) Det

2
Tr( [ , ]) ,

(50)

N N

, 1 , 1

which applied to the SLD Lμ’s, yields

JDet Det2 (51)≥ .

For N = 2, when the inequality (51) is saturated, it implies that

 

−G GJ( ) 2 Det , (52)1

which means that the discrepancy G( )  reaches the same order of magnitude of tr(GJ−1), i.e. the CRB itself. This 
limit marks the condition of maximal incompatibility for the two-parameter estimation problem, arising from the 
quantum nature of the underlying system.

Another interesting inequality relates the eigenvalues of J and  . The QFT I L L J iTr( ) 2ρ= = −μν μ ν μν μν  is 
a positive (semi)-definite Hermitian matrix. Hence, by definition ≥J i2 , in a matrix sense. It follows that

≥j i u2 , (53)i i

where ji and ui are the i-th eigenvalues of J and  , respectively, ordered according to 
≤ ≤ ≤j j jN1 2  and 

u u uN1 2≤ ≤ ≤ . In particular, for i = 1, one gets

≥ .∞ ∞J i2 (54)
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