16 research outputs found

    The role of autophagy in resistance to targeted therapies

    Get PDF
    Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer, autophagy play a role in the development and progression, while several studies describe it as one of the key processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as chemotherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices, mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy in drug resistance after targeted therapy in different types of cancers. We highlight positive results and limitations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted therapies. Refereed/Peer-reviewe

    Pentose phosphate pathway inhibition induce Endoplasmic Reticulum stress and autophagy

    Get PDF
    Pentose phosphate pathway (PPP) is a major glucose catabolism pathway that supplies the cell with a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate. NADPH is necessary for the detoxification of reactive oxygen species (ROS) and reductive biosynthesis. A key player in this pathway is the enzyme glucose-6-phosphate dehydrogenase (G6PD) that reduces NADP+ to NADPH, oxidizes glucose-6-phosphate and prevents ROS accumulation. Here, we show that the natural molecule 3,4’,5-trihydroxystilbene-3-β-d-glucoside (Polydatin) inhibits glucose-6-phosphate dehydrogenase (G6PD). As expected, G6PD inhibition causes an imbalance in NADP+/NADPH ratio, leading to a redox imbalance, followed by Endoplasmic Reticulum (ER) stress, autophagy, cell cycle block and apoptosis. we have demonstrated a link between G6PD inhibition and ER stress, showing that Unfolded Protein Response mediator such as PERK and IRE-1 have a key role in inducing autophagy and apoptosis after PPP block. Moreover, combination of PPP inhibition with autophagy inhibitors, such as chloroquine, strongly potentiate cytotoxicity on cancer cells, evidencing the role of autophagy as an escaping mechanism. This results shows that double inhibition of PPP and autophagy may be an affective therapeutic strategy against cancer

    Three-Dimensional imaging of the developing vasculature within stem cell-seeded scaffolds cultured in ovo

    Get PDF
    Successful tissue engineering requires functional vascularization of the three-dimensional constructs with the aim to serve as implants for tissue replacement and regeneration. The survival of the implant is only possible if the supply of oxygen and nutrients by developing capillaries from the host is established. The chorioallantoic membrane (CAM) assay is a valuable tool to study the ingrowth and distribution of vessels into scaffolds composed by appropriate biomaterials and stem cell populations that are used in cell-based regenerative approaches. The developing vasculature of chicken embryos within cell-seeded scaffolds can be visualized with microcomputed tomography after intravenous injection of MicroFil®, which is a radiopaque contrast agent. Here, we provide a step-by-step protocol for the seeding of stem cells into silk fibroin scaffolds, the CAM culture conditions, the procedure of MicroFil® perfusion, and finally the microcomputed tomography scanning. Three-dimensional imaging of the vascularized tissue engineered constructs provides an important analytical tool for studying the potential of cell seeded scaffolds to attract vessels and form vascular networks, as well as for analyzing the number, density, length, branching, and diameter of vessels. This in ovo method can greatly help to screen implants that will be used for tissue regeneration purposes before their in vivo testing, thereby reducing the amount of animals needed for pre-clinical studies

    Evaluation and isolation of cancer stem cells using ALDH activity assay

    No full text
    The aldehyde dehydrogenase (ALDH) is a polymorphic enzyme responsible for the oxidation of aldehydes to carboxylic acids. In this chapter, it is described the role of ALDH in the identification of cancer stem cells (CSCs), having been shown that stem cells express high levels of ALDH. Here, we present a method called ALDEFLUOR assay used for the identification, evaluation, and isolation of normal, cancer stem and progenitor cells

    A PSO-MMA Method for the Parameters Estimation of Interarea Oscillations in Electrical Grids

    No full text
    This article deals with the parameters’ measurement of interarea oscillations, which are low-frequency damped oscillations that affect the high-voltage transmission lines when an unbalance between the power demand and the generated power occurs. The authors propose a method that processes the samples provided by the phasor measurement unit (PMU) and performs the online estimation of the parameters that characterize the interarea oscillations. The method takes advantage of the speed of a heuristic algorithm, such as the particle swarm optimization (PSO), but performs an enhancement on the results to increase the reliability. The tests carried out for the method assessment prove that the proposed method is characterized by a fast response, high accuracy, and excellent reliability, regardless of the type of oscillation that is considered

    Synchrotron Phase Tomography: An Emerging Imaging Method for Microvessel Detection in Engineered Bone of Craniofacial Districts

    No full text
    International audienceThe engineering of large 3D constructs, such as certain craniofacial bone districts, is nowadays a critical challenge. Indeed, the amount of oxygen needed for cell survival is able to reach a maximum diffusion distance of ∼150-200 µm from the original vascularization vector, often hampering the long-term survival of the regenerated tissues. Thus, the rapid growth of new blood vessels, delivering oxygen and nutrients also to the inner cells of the bone grafts, is mandatory for their long-term function in clinical practice. Unfortunately, significant progress in this direction is currently hindered by a lack of methods with which to visualize these processes in 3D and reliably quantify them. In this regard, a challenging method for simultaneous 3D imaging and analysis of microvascularization and bone microstructure has emerged in recent years: it is based on the use of synchrotron phase tomography. This technique is able to simultaneously identify multiple tissue features in a craniofacial bone site (e.g., the microvascular and the calcified tissue structure). Moreover, it overcomes the intrinsic limitations of both histology, achieving only a 2D characterization, and conventional tomographic approaches, poorly resolving the vascularization net in the case of an incomplete filling of the newly formed microvessels by contrast agents. Indeed, phase tomography, being based on phase differences among the scattered X-ray waves, is capable of discriminating tissues with similar absorption coefficients (like vessels and woven bone) in defined experimental conditions. The approach reviewed here is based on the most recent experiences applied to bone regeneration in the craniofacial region

    An Optimized HT-Based Method for the Analysis of Inter-Area Oscillations on Electrical Systems

    No full text
    The paper deals with a novel method to measure inter-area oscillations, i.e., electromechanical oscillations involving groups of generators geographically distant from one another and ranging within the frequency interval from 0.1 Hz up to 1 Hz. The estimation of the parameters characterizing inter-area oscillations is a crucial objective in order to take the necessary actions to avoid the instability of the transmission electrical system. The proposed approach is a signal-based method, which uses samples of electrical signals acquired by the phasor measurement unit (PMU) and processes them to extract the individual oscillations and, for each of them, determine their characteristic parameters such as frequency and damping. The method is based on Hilbert transformations, but it is optimized through further algorithms aiming at (i) improving the ability to separate different oscillatory components, even at frequencies very close to each other, (ii) enhancing the accuracy associated with the damping estimates of each oscillation, and (iii) increasing the robustness to the noise affecting the acquired signal. Results obtained in the presence of signals involving the composition of two oscillations, whose damping and frequency have been varied, are presented. Tests were conducted with signals either synthesized in simulated experiment or generated and acquired with actual laboratory instrumentation

    NZ-GMP approved serum improve hDPSC osteogenic commitment and increase angiogenic factor expression

    Get PDF
    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact
    corecore