79 research outputs found

    Using a random road graph model to understand road networks robustness to link failures

    Get PDF
    Disruptions to the transport system have a greater impact on society and the economy now than ever before due to the increased interconnectivity and interdependency of the economic sectors. The ability of transport systems to maintain functionality despite various disturbances (i.e. robustness) is hence of tremendous importance and has been the focus of research seeking to support transport planning, design and management. These approaches and findings may nevertheless be only valid for the specific networks studied. The present study attempts to find universal insights into road networks robustness by exploring the correlation between different network attributes and network robustness to single, multiple, random and targeted link failures. For this purpose, the common properties of road graphs were identified through a literature review. On this basis, the GREREC model was developed to randomly generate a variety of abstract networks presenting the topological and operational characteristics of real-road networks, on which a robustness analysis was performed. This analysis quantifies the difference between the link criticality rankings when only single-link failures are considered as opposed to when multiple-link failures are considered and the difference between the impact of targeted and random attacks. The influence of the network attributes on the network robustness and on these two differences is shown and discussed. Finally, this analysis is also performed on a set of real road networks to validate the results obtained with the artificial networks

    Using a hazard-independent approach to understand road-network robustness to multiple disruption scenarios

    Get PDF
    A range of predictable and unpredictable events can cause road perturbations, disrupting traffic flows and more generally the functioning of society. To manage this threat, stakeholders need to understand the potential impact of a multitude of predictable and unpredictable events. The present paper adopts a hazard-independent approach to assess the robustness (ability to maintain functionality despite disturbances) of the Sioux Falls network to all possible disruptions. This approach allows understanding the impact of a wide range of disruptive events, including random, localised, and targeted link failures. The paper also investigates the predictability of the link combinations whose failure would lead to the highest impacts on the network performance, as well as, the correlation between the link-criticality rankings derived when only single-link failures are considered as opposed to when multiple-link failures are considered. Finally, the sensitivity of the robustness-assessment results to the intensity and distribution of the travel demand is evaluated

    Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution

    Full text link
    In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. [2006] have found analytical results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201

    MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status

    Get PDF
    The methylation status of the O6-methylguanine- DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs,
    corecore