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a b s t r a c t 

Disruptions to the transport system have a greater impact on society and the economy now than ever 

before due to the increased interconnectivity and interdependency of the economic sectors. The abil- 

ity of transport systems to maintain functionality despite various disturbances (i.e. robustness) is hence 

of tremendous importance and has been the focus of research seeking to support transport planning, 

design and management. These approaches and findings may nevertheless be only valid for the spe- 

cific networks studied. The present study attempts to find universal insights into road networks ro- 

bustness by exploring the correlation between different network attributes and network robustness to 

single, multiple, random and targeted link failures. For this purpose, the common properties of road 

graphs were identified through a literature review. On this basis, the GREREC model was developed to 

randomly generate a variety of abstract networks presenting the topological and operational character- 

istics of real-road networks, on which a robustness analysis was performed. This analysis quantifies the 

difference between the link criticality rankings when only single-link failures are considered as opposed 

to when multiple-link failures are considered and the difference between the impact of targeted and 

random attacks. The influence of the network attributes on the network robustness and on these two 

differences is shown and discussed. Finally, this analysis is also performed on a set of real road networks 

to validate the results obtained with the artificial networks. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Transport systems are subject to recurrent disruptions caused

y accidents, extreme weather conditions and infrastructure fail-

res. Considering the increased interconnectivity and interdepen-

ency of the economic sectors, the unavailability of a small fraction

f a transport network can lead to major consequences for society

nd the economy. For instance, the collapse of the I-35W Bridge

n Minneapolis (USA) resulted in economic losses of US$71,0 0 0 to

S$220,0 0 0 a day [1] . 

Consequently, the robustness of road networks (i.e. their ability

o withstand a given level of stress without suffering degradation

r loss of functionality) is of tremendous importance and has been

he focus of research seeking to support transport planning, design

nd management. Numerous approaches were developed to mea-
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ure and study transport systems robustness including [2–4] . Al-

hough these approaches and case studies provide interesting con-

lusions some of their findings may only be valid for the specific

etworks studied. Further investigations are thus required to eval-

ate the effectiveness of these approaches and the generality of

heir findings. 

A major concern in robustness analyses is the identification

f the most critical elements (set of road segments or intersec-

ions whose failure would result in the highest impacts on the en-

ire system) in a network. The rationale for such studies is that

he most critical elements should be given top priority for rein-

orcement to enhance the system pre-event robustness but also

or post-event restoration. To identify the critical links, [5] pro-

osed an approach based on single-link-failures (SLFs) where each

ink is removed from the network and the corresponding effect

n the network performance estimated. The levels of impact are

hen ranked and the links demonstrating the most significant im-

acts considered to be the most critical. However, this approach
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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disregards multiple-link failures (MLFs). [3] showed that the most

critical links when MLFs occur are not simply the combination of

the most critical links with SLF. Their study was however lim-

ited to two different networks of up to 24 nodes. Hence, it re-

mains unclear how the most critical links can be identified consid-

ering multiple-link failures, how different are the criticality rank-

ings when only SLFs are considered as opposed to when MLFs are

considered and how sensitive are these results to different network

characteristics. 

Another growing concern in robustness analyses of road net-

works is targeted attacks. Studies commonly distinguish between

targeted and random failures. The latter model damage to a ran-

dom set of links (e.g. pavement maintenance, pipe bursting or po-

lice incidents amongst others can lead to random road closures)

whereas targeted attacks imply a driving force seeking to max-

imise damage to the network (e.g. the bombing of a critical bridge).

As explained in [6] , the simple conclusion that a network is more

vulnerable to targeted attacks does not provide any novel insights

since it is inherent to the definition of both kinds of attacks. A

more interesting question is how much more vulnerable a network

is to targeted attacks compared to random failures. In other words,

the objective is rather to quantify the difference of impacts and

subsequently determine if a particular network is well protected

against targeted attacks or not. 

The present paper aims at answering these questions by

performing a robustness analysis on a variety of abstract road net-

works. These networks result from a model that randomly gener-

ates graphs presenting the topological and operational character-

istics of real-road networks. This random network model is used

because contrary to real maps its characteristics are controllable

and allow for a sound sensitivity analysis of network robustness,

which in turn can provide practical insights for network planners

and operators. This novel approach allows the analysis of a large

set of networks resulting in a clearer understanding of the gener-

ality of the results and conclusions, which are ultimately validated

on a set of real network samples from OpenStreetMap 

This study has four research objectives: (i) develop a random

road network model, (ii) use this model to evaluate the corre-

lation of topological and operational network characteristics with

robustness to single, multiple, random and targeted link failures

as well as (iii) the correlation between SLF and MLF based link

criticality rankings and (iv) validate the results using real road

network samples. The paper is organised as follows. Section 2

provides a background on robustness analyses, road network prop-

erties and random road graph models. The methodology is de-

scribed in Section 3 , including the random road graph model. The

results are presented in Section 4 and discussed in Section 5 .

Finally, some conclusions and recommendations are provided in

Section 6 . 

2. Background 

2.1. Background on road network robustness analyses 

2.1.1. Robustness definition and quantification 

System robustness is generally defined as the ability to with-

stand a given level of stress or demand without suffering degra-

dation or loss of function [7] . Robustness is often linked to the

concept of resilience as the latter encompasses two parts: the abil-

ity to absorb perturbations (robustness) and recover quickly (ra-

pidity). As a result, robustness measures (that don’t address ra-

pidity) are sometimes referred to as resilience measures in the

literature e.g. [8,9] . These resilience indicators are hence consid-

ered as robustness measures in this paper although they are not

referred to as is in the references. 
There is no consensual indicator for road network robustness

ither. Some studies measured robustness as the ability to cope

ith loss in origin-destination pairs connectedness [2] , while oth-

rs focused on the increased travel time (TT). To compare the pre-

nd post-event situations, some considered the difference of total

T in the pre- and post-loss situations [9,10] while others consid-

red their ratio [8] . 

.1.2. Approaches to link criticality assessment 

The approach of [5] - that uses single-link failures to identify

ritical links - has the disadvantage of requiring the computation of

 number of traffic simulations equivalent to the number of links

n the network studied, which is unrealistic in very large networks

.g. the road network of London has nearly 20 0,0 0 0 links [11] . This

pproach was however adopted and improved in studies [8,10] that

lso consider link-capacity reductions rather than complete link re-

ovals to model day-to-day disruptions. However, link-capacity re-

uctions add to the - already high - computational cost of this ap-

roach since several scenarios need to be computed per link. 

Besides, this approach disregards the combined effect of

ultiple-links failures, which may be problematic as the most crit-

cal links when MLFs occur are not always simply the combination

f the most critical links with SLF [3] . As MLFs also add to the

omputational cost of link-criticality studies, there is a need to un-

erstand if and when SLFs provide a reasonable approximation of

he criticality rankings resulting from MLFs. 

.1.3. Random and targeted attacks modelling 

The research community in complex network theory has stud-

ed robustness as the changes of some metric of the network func-

ionality against the fraction of removed nodes (or links) to under-

tand how many nodes (links) have to be removed to fragment a

etwork into isolated components [6,12,13] . These studies distin-

uish between random and targeted attacks, the latter resulting in

ore rapid and severe robustness losses. 

One of the rare applications of this ”dismantling process” ap-

roach to road networks was proposed by [14] . The authors mea-

ured the robustness of self-organised street networks (e.g. Rome)

s the fraction of removed nodes leading to a 50% reduction in the

ize of the largest connected component of the original network.

his indicator is however arbitrary (i.e. the 50% limit is not justi-

ed) and does not fully capture road network functionality (i.e. the

volution of drivers travel time). 

Furthermore, most of these studies conclude that transport net-

orks are less robust to targeted attacks than random ones but do

ot attempt to quantify the extended impact of targeted attacks

6] . 

.2. Background on road network properties 

The abstract representation of a transport system as a network

f nodes (or vertices) and links (or edges), whether it involves

oads, railways or airspace, defines a network topology. In the case

f road networks, the most intuitive and popular approach is to

odel both intersections and dead-ends as nodes and the street

egments between them as links. This section surveys the litera-

ure to characterise road networks and their graph representations.

.2.1. Road networks approximate planarity and patterns 

An important characteristic of road networks noted in the

iterature is their approximate planarity [15,16] . Road networks

ssentially lie in a plane such that when two roads intersect,

 link between them is necessarily created. Few exceptions to

his rule exist such as elevated highway bridges spanning other

oads. [17] investigated the planarity of 50 urban street networks
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orldwide. The results show that many road networks can be de-

cribed as approximately planar. However, the planar simplification

an misrepresent intersection densities, street lengths and routing

n certain cites that contain a non-negligible number of grade sep-

rations (e.g. Moscow). 

Several publications [18,19] analysed and classified the patterns

f urban road networks. [20] summarised these studies and classi-

ed all road networks as grid (four-legged intersections with right

ngles and parallel lines), warped parallel (straight lines mostly

arallel to each other with curved or rectilinear formations and

hree-legged intersections), mixed (no dominant pattern), loops

 lollipops (tree-like structure with cul-de-sacs, branches and

hree-legged intersections) and sparse (discontinuous and decen-

ralised with a high proportion of cul-de-sacs). As an indication, in

20] all of these patterns could be identified in community areas

n Florida’s Orange County (USA). 

.2.2. Road network intersections 

Network topologies are typically characterised by the distribu-

ion of the degree (i.e. number of adjacent links) of their nodes.

he studies of [11,21] and [22] evaluating the topology of network

amples from 20 cities, London (UK) and Xiamen Island (China)

espectively allow characterising the degree distribution in road

etworks. Undirected graphs representing road networks generally

ave very few six-or-more road intersections, few five-road inter-

ections, a large number of four-road intersections and a very large

umber of three-road intersections except in cities presenting a

ominant square-grid structure (e.g. San Francisco) where four-

treet intersections are more frequent than three-street intersec-

ions. 

These empirical studies show that the number of connections

f road intersections is limited as in road networks two distant

odes are less likely to be directly connected due to the distance-

ependence of the links travel costs [12] . Hence, although intersec-

ions connecting more than six roads exist (e.g. the roundabout at

lace Charles de Gaulle in Paris connects 12 streets) they are very

are and can be treated as exceptions. 

.2.3. Road network links 

Another important characteristic of road networks noted in

16] is the heterogeneity resulting from road hierarchy (i.e. roads

re typically categorised into minor and major local streets, re-

ional roads and highways) that differentiate between functional

roperties and operational performance of roads, which provide

oth property access and travel mobility. Local streets mainly serve

he land access function while arterial roads (e.g. highways) pro-

ide a high level of mobility for through movement. 

Road hierarchy results in heterogeneous link travel costs. It is,

owever, difficult to go beyond this statement and define a gen-

ral distribution for the link travel costs in road networks be-

ause these costs depend on dynamic factors such as the link travel

ime (which depends on a variety of parameters including the link

ength, speed limit and traffic conditions). Furthermore, even the

istributions of static parameters like the links length present sev-

ral configurations. [23] found that self-organised cities e.g. Cairo

Egypt) exhibited single-peaked distributions while planned cities

.g. Los Angeles (USA) exhibited multimodal distributions due to

heir grid pattern. However, [23] did not report any specific dis-

ribution. [11] fitted a power-law (with a cut off for the longest

treets) to the London street network. The study of [24] that con-

idered 10 European cities showed slightly different results as a

ower law emerged in the distribution tails but the fitting wors-

ned with decreasing link lengths. They observed that the percent-

ge of streets failing inside the power law region ranged from 4%

Barcelona) to 29% (Lancaster) and suggested that cities may be

omposed of streets following two distributions. 
.2.4. Summary of road networks properties 

Finally, the review of the different studies of real-world road

etworks topologies and patterns allowed identifying the main

roperties of road graphs: 

• road networks are not universally planar but many road graphs

can be approximated as planar; 

• road networks include patterns ranging from the regular grid

and wrapped parallel structures to the more irregular loops, lol-

lipops and sparse structures; 

• road graphs have a negligible proportion of intersections with

six or more connections; 

• road graphs comprise a large majority of three or four road in-

tersections; 

• the functional properties and performance of road links are het-

erogeneous. 

.3. Background on random road network models 

Random road network models were developed for different pur-

oses. [25] used a grid model to evaluate the impact of mobil-

ty (e.g. connected vehicles on a freeway) on the performance of

outing protocols for ad hoc networks. This model is very regu-

ar and doesn’t hold many features of real road networks like the

eterogeneity in nodal degrees. More sophisticated models for ran-

om road network have been proposed by the research community

n complex network theory. [26] proposed a planar variant of the

lassical Erdös–Rényi random graph model (in complex network

heory a ”random network” refers to a network where each node

air is connected with a fixed probability). [11] built on this basis

o propose the Growing Random Planar Graph (GRPG) that seeks

o mimic the effect of urban sprawls. Unfortunately, both models

end to generate more high degree nodes (superior to six) than

bserved in real networks. [27] also notes that the GRPG model

esults in an unrealistic abundance of acute-angled intersections. 

Other works focused on developing models for road networks

t a larger scale (e.g. national scale) that hence account for the

iversity in road hierarchy. [28] studied the topological and geo-

etric structure of the national road networks of three countries

i.e. Denmark, England and the USA). The study revealed that all

ourneys from a postal code to another, regardless of their length,

ave an identical structure. Drivers seeking to optimise their travel

ime would typically start their journey in a local street close to

heir point of origin, and progressively move to larger and faster

oads (which are higher in the road hierarchy) until they reach the

astest single road between their origin and destination. On this

oad, they cover as much distance as possible, and then progres-

ively descend to smaller roads until their destination. This finding

ed [28] to introduce a square-grid fractal model for road place-

ent that reproduces both the observed hierarchical and scale-

nvariant structure of journeys. Noting that the basic fractal model

as too regular to resemble real-road networks, [27] proposed the

uadtree model, which employs the fractal model but uses a ran-

om tree to distribute the smaller square grids in the network. The

rawback of both models is that the degree of the intersections in

he networks generated is limited to four. 

To overcome the shortcomings of the grid model, [15] devel-

ped the Grid model with Random Edges (GRE). The main idea of

his model is to randomly introduce the effects of obstacles and

hortcuts in the basic grid model. Obstacles (e.g. buildings, parks

nd rivers) normally make a road network sparser as they pre-

ent certain roads from being built while shortcuts (i.e. diagonal

inks in the grid) make a road network denser. Using an optimisa-

ion algorithm and six parameters (the area length and width, the

verage lengths of vertical and horizontal lines in the network, a

robability controlling the presence of horizontal and vertical lines



4 P.Y.R. Sohouenou, P. Christidis and A. Christodoulou et al. / International Journal of Critical Infrastructure Protection 29 (2020) 100353 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v0,0

vmn,,mn

vi,j

n

m

vi+1,j+1

vi+1, j

vi,j+1

Fig. 1. Grid network used in the procedure to build the GREREC model 
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to simulate obstacles, and a probability controlling the presence of

shortcuts), they fit the model to real road network samples from

66 main cities in Europe and the USA. The topological character-

istics (i.e. average nodal degree, average shortest path length and

density of nodes and links) of the abstract models and real net-

works were reasonably correlated especially in the case of the US

cities (for which the fitting process was easier since they generally

don’t have shortcuts). 

3. Methods 

This section describes the research method adopted. Firstly, the

abstract road network model is introduced. The network attributes

and the robustness metrics used are then presented, followed by

the experimental procedure. Finally, the road network samples

used for validation are presented. 

3.1. Grid network with Random Edges and Regional Edge Costs 

(GREREC) model 

The model used to generate random road networks is an im-

provement of the GRE model ( Section 2.3 ) since this model syn-

thesizes most of the topological characteristics of road networks.

Four modifications were introduced to the GRE model to better fit

the purpose of the present study: 

• the removal of the links at the rim of the network is allowed; 

• the unconditional removal of vertical and horizontal links is al-

lowed; 

• the generation of all types of diagonals (i.e. shortcuts) is possi-

ble; 

• the geometric lengths of the edges are not considered instead

the links are directly assigned a random travel cost depending

on the link position in the network. 

The first three modifications allow the generation of a larger

spectrum of network topologies. To ensure that the graphs gener-

ated by the original GRE model are connected (i.e. a path exist be-

tween every pair of nodes), the model always keeps the edges at

the rim of the area and only allows the removal of a vertical edge

if its adjacent bottom left horizontal edge exists. The elimination of

these two constraints allows the generation of sparser and more ir-

regular topologies. In addition, keeping the edges at the rim of the

area means that for any pair of nodes in the network there is a

path connecting them through the network periphery, which may

not always be the case in real networks. This assumption may be

especially problematic for robustness analyses, which aim at eval-

uating the consequences of link failures in the network. One im-

plication of these two modifications is however that the graphs

generated can be disconnected. An analysis of the connectedness

of GREREC model is provided in Appendix A.1 . 

Besides, the GRE model only generates shortcuts departing form

specific nodes to ensure planarity (two diagonals cannot intersect

without creating a node). In the present model, the construction of

both diagonals was made possible by allowing the construction of

one diagonal providing that the other one doesn’t exist (see rule 3)

and 4) in the procedure below). 

The fourth modification increases the flexibility of the model

and allows the introduction of road hierarchy effects in the net-

work. To this end, travel-cost values are randomly assigned to the

links depending on their origin node. The area around a node

hence describes a “region” where roads are likely to present the

same characteristics (length, speed limits, etc.). This modification

implies that contrary to the original GRE model, the present model

doesn’t generate geometric grid networks with straight lines. The

networks generated have a “grid” topology but their spatial repre-
entation may include curved roads to respect the geometric dis-

ances between the nodes. 

This new model is called the Grid network with Random Edges

nd Regional Edge Costs (GREREC). The procedure used to generate

 graph with the GREREC model is described below: 

1. Generate a graph with a rectangular grid topology. The di-

mensions m and n of the rectangle (i.e. the number of nodes

per row and columns respectively) are the only parame-

ters necessary to define the grid. The graph generated has

N = mn nodes and the vertex on the i -th column and j -th

row is denoted as v i, j . 

2. Check and remove the existing edges by the order “left to

right, bottom to top” with probability (1 − p) . 

3. For each vertex v i, j where both i and j are odd numbers,

generate the four diagonal edges departing from v i, j with

probability q . 

4. For each vertex v i, j where i is an even number (regardless

of j ), generate the four diagonal edges departing from v i, j 
with probability q providing that the diagonal is not inter-

secting an existing one. 

5. Randomly assign a travel cost to the edges by the order ”left

to right, bottom to top” with the following rule: all the links

departing from the same node have the same cost of travel. 

The grid network model used in the procedure is shown in

ig. 1 . The sequences of travel costs assigned to the links in rule

 were generated as normally distributed random numbers in the

iscrete interval [1, max ( n, m )] to ensure that the costs diversity

as proportional to the network size. In other words, a larger net-

ork is more likely to be composed of a more diverse range of

oad types. Considering the huge variety of link cost distributions

bserved in real road networks ( Section 2.2 ), the standard normal

istribution was arbitrarily adopted to generate random sequences

f link costs that at least were unlikely to result in uniform distri-

utions since none of the distributions observed in real road net-

orks was uniform. 

The GREREC model hence uses four parameters: m and n (the

imensions of the rectangular grid), p (the probability of keeping

orizontal and vertical edges in the grid) and q (the probability of

enerating shortcuts in the grid) to generate random road graphs.

he standard deviation of the link costs in the network can also

e used to measure the link cost heterogeneity in the network.

ig. 2 shows examples of graphs generated by the GREREC model.

he topologies generated range from relatively sparse and decen-

ralized structures ( Fig. 2 .a) to very compact structures ( Fig. 2 .f)

ut also include the very ordered grid-like structure ( Fig. 2 .d) and

ore irregular structures ( Fig. 2 .b). 



P.Y.R. Sohouenou, P. Christidis and A. Christodoulou et al. / International Journal of Critical Infrastructure Protection 29 (2020) 100353 5 

(a) medium p low q (b) medium p medium q (c) medium p high q

(d) high p low q (e) high p medium q (f) high p high q

Fig. 2. Examples of graphs generated by the GREREC model depending on p (prob- 

ability of keeping horizontal and vertical edges) and q (probability of generating 

shortcuts) - the edge thickness indicates a higher cost of travel ( m = n = 5 ) 
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.2. Network topological and operational characteristics 

.2.1. Network topological characteristics 

To characterise the topology of the graphs generated, five topo-

ogical measures with potential relevance to network robustness

ere selected: the network alpha, beta and gamma indices, as well

s the average and standard deviation (heterogeneity) of the de-

ree distribution in the network. 

The alpha, beta and gamma indices are measures of the con-

ectivity (or density) of planar graphs presented in [29] . The alpha

ndex ( α) is the ratio of the number of cycles (i.e. path wherein

 node is reachable from itself without using the same link more

han once) to the maximum possible number of cycles (2 N − 5) : 

= 

L − N + μ

2 N − 5 

(1) 

here L, N and μ are the numbers of links, nodes and sub-graphs

n the graph respectively. The case when μ = 1 (the graph is con-

ected) is referred to in [12] as the meshedness coefficient, which

aries from zero (tree structures) to one (complete planar graph,

hich is a triangulation). 

The beta index ( β) is the ratio between the number of links and

he number nodes. 

= 

L 

N 

(2) 

inimally connected networks (where the links form a cycle) have

 beta value close to one while denser networks have a higher β .

 network only composed of four-legged intersections with a few

utliers (e.g. the grid pattern) would present a value of β close to

wo. The average degree and β are equivalent in undirected graphs

i.e. β = 2 < Degree > ) since in these graphs the total number of

inks equals two times the sum of the node degrees [30] . 

The gamma index ( γ ) is the ratio of the number of links to the

aximum possible number of links in a planar graph 3(N − 2) : 

= 

L 

3(N − 2) 
(3) 

All of these indices (i.e. α, β , γ ) increase with the network con-

ectivity. 

.2.2. Operational characteristics 

The main function of road networks is to provide mobility i.e.

onnect origin-destination (OD) pairs in a timely manner. In the
raphs representing road networks, some of the nodes don’t serve

s origin-destination points. To take this specificity into account,

e assumed that the bottom-left ( v 0, 0 ) and top-right ( v mn, mn )

odes of the original grid ( Fig. 1 ) were OD points and randomly

elected additional OD points in the network with the probability

 . When r = 0 only these two nodes were considered as OD points,

hile when r = 1 all the nodes in the network served as OD points.

Therefore, besides their topological characteristics, the GREREC 

etworks have two operational characteristics: r OD the ratio be-

ween the number of OD points and the number of nodes and h lc 
he heterogeneity of the link travel costs (standard deviation of the

inks cost distribution). 

.3. Robustness, link criticality and attack extended impact indicators 

.3.1. Robustness indicator 

As explained in Section 2.1.1 , there is no consensual indica-

or for road network robustness. Since the main function of road

etworks is to connect origin-destination pairs in a timely man-

er, previous research measured robustness as the increase in to-

al travel time across the network. However, similar total TT values

an result from different situations, thus the related indicators may

e unable to discriminate between the impacts caused by these sit-

ations [31] . Hence, the robustness indicator ( RO ) adopted in this

tudy focuses on the impact of the disruption on the TT in the OD

airs: 

O = 

∑ 

w 

k w 

(
1 + 

T T w 

d 
− T T w 

0 

T T w 

0 

)−1 

(4) 

here w and k w 

are an OD pair and the associated weighting fac-

or, respectively. k w 

is the ratio between the travel demand on w

nd the total travel demand. T T w 

0 
and T T (w ) 

d 
are the undisrupted

nd disrupted travel times respectively. RO has the advantages of

eing scaled between 0 and 1 and being able to differentiate be-

ween the impacts on network performance when few or many OD

airs are disconnected by using a weighted average of the rela-

ive change of the TT on the OD pairs [31] . RO = 100% indicates

hat despite the disruptive event the TT remains equal to the ini-

ial travel time ( T T w 

0 
) on all OD pairs. Then, the robustness indica-

or decreases as T T w 

d 
increases, the decrease being more important

hen highly demanded routes are impacted. 

In the present study, a shortest path analysis was used to evalu-

te the robustness of the networks based on their structure rather

han more computationally expensive traffic simulations that also

ccount for capacity constraints. Hence, the OD pairs were consid-

red to be of equal importance (i.e. k w 

= 1/ N OD , N OD being the

umber of OD pairs) and TT w is the travel cost on the least-path

ost for w . 

.3.2. Criticality indicator 

To identify the most critical links with regards to multiple-link-

ailures, a criticality index was computed for each link depending

n the effect of its degradation on the network performance in all

f the scenarios considered. In this study, the scenario types con-

idered were single, two (2LF) and three link failures (3LF). 

The criticality index ( Cr a ) of link a is: 

r a = 

∑ 

t 

1 

L t 
〈 1 − RO s 〉 a t (5) 

here RO s is the network robustness to the hazard s as defined

n Eq. 4 . The notations t and L t indicate a scenario type (e.g. 2LF)

nd the number of links damaged by the hazards of this scenario

ype respectively. In other words, it was assumed that a scenario

n which L t links fail is L t times less probable than a SLF scenario.

nother possible interpretation of this division by L t is that the
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Fig. 3. Comparison of the impact of a targeted attack (BETWI) and 10 random at- 
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failed links were assumed to equally contribute to the loss of per-

formance. 〈 1 − RO s 〉 a t means that the expression is averaged over

the scenarios of the same type t in which a is damaged. The av-

erages per scenario type ensure that the contributions of the dif-

ferent scenario types to the link criticality are in the same range.

Indeed, there are more scenarios of multiple-link failures than SLFs

i.e. if L is the number of links in the network, there is one, (L − 1 )

and (L − 1)(L − 2) scenarios of SLF, 2LFs and 3LFs per link, respec-

tively, hence a simple sum would inherently give more importance

to multiple-link failures. The links that are not critical to the net-

work performance would have a Cr a value close to zero as RO s ≈ 1

in the hazards where these links fail, while Cr a increases with the

link criticality. 

3.3.3. Comparison of the link criticality rankings derived from 

different scenarios 

To compare the rankings derived from the criticality index ( Cr a )

when only single-link failures are considered as opposed to when

multiple-link failures are considered, Spearman’s rank-order corre-

lation coefficient was used. Spearman’s and Kendall’s coefficients

are the most popular indicators to evaluate the correlation of non-

parametric measures and have equivalent performances [32] . The

choice of Spearman’s coefficient has been motivated by the fact

that [32] found better results when the data contain ties, which is

the case in the present study. This coefficient provides a measure

in [-1, 1], where -1 and 1 indicate a very strong negative and pos-

itive correlation respectively while zero indicates no correlation. 

3.3.4. Measurement of the extended impact of targeted attacks 

In this section, an indicator is developed to quantify the dif-

ference in impact between random and targeted attacks. The ”dis-

mantling process” approach found in complex network theory

studies [6,13] is used to develop a single measure of road networks

robustness to a mode of attack (e.g. targeted attacks) that doesn’t

present the arbitrariness of the indicator used in [14] and accounts

for the increased TT . This measure is called ”cumulative” robust-

ness ( CRO z ) and is given by the expression: 

RO z = 

1 

L 

∫ L 

0 

RO z (x ) dx (6)

where z is the attack mode considered and L the total number of

links in the network. RO z ( x ) is the road network robustness ( Eq. 4 )

when x links failed. As RO z ( x ) is scaled between 0 and 1, the divi-

sion by L also scales CRO z between 0 and 1. The value obtained can

hence be used to compare the robustness of networks of different

sizes. 

The computation of the network cumulative robustness to tar-

geted attacks requires a sequence of failed links resulting in rapid

and severe robustness losses. Criticality-based attacks were ex-

cluded because of their computational costs, as these require the

analysis of L ! SLF scenarios in a network containing L links. Instead,

the betweenness centrality (i.e. the number of shortest paths that

go through an edge) first introduced by [33] were used to identify

important links in the networks. The betweenness centrality of link

a is given by: 

BET W (a ) = 

∑ 

x � = y 

σxy (a ) 

σxy 
(7)

where σ xy and σ xy ( a ) are the number of shortest paths between

the nodes x and y and the number of shortest path between x

and y that contain a respectively [34] . The link betweenness can

be used as an indicator of the link importance [4] as an edge with

a high betweenness score connects many pairs of nodes through

the shortest path between them. 

In the interactive (or dynamic) betweenness attack, the links

with the highest betweenness scores are iteratively removed while
he betweenness of the links are recomputed after each removal.

ynamic betweenness attacks hence target potentially highly criti-

al links in each step, making the attack more harmful to the net-

ork than attacks based on initial estimations of link importance

n the original network. Interactive betweenness attacks were se-

ected to model targeted attacks in this study since they have been

eported as the most detrimental attack among different attacks

6,35] . 

To evaluate the extended impact of targeted attacks in a spe-

ific network, the cumulative robustness of the network to an in-

eractive betweenness attack ( CRO BETWI ) and a representative ran-

om attack ( CRO RAND ) were compared. The latter was obtained by

veraging the impact of 10 0 0 random attacks. The extended im-

act of targeted attacks ( TA EI ) is defined as the difference between

oth values: 

 A EI = C RO RAND − C RO BET W I (8)

The concepts described in this section are illustrated in Fig. 3

here CRO BETWI corresponds to the area under the dashed curve

nd CRO RAND is the mean area under the solid curves. 

.4. Experimental procedure and simulations 

To identify the characteristics that influence network robust-

ess to single, multiple, random and targeted link failures in the

REREC model, quasi Monte-Carlo (QMC) simulations were em-

loyed to obtain 300 samples that are as different from each other

s possible. Contrary to standard Monte-Carlo methods based on

seudo-random numbers, QMC methods use sequences of quasi-

andom numbers providing values that are better equidistributed

n a given volume than pseudo-random numbers [36] . These meth-

ds were originally designed for integration but were used here to

nsure that the results covered a large parameter space with lim-

ted samples and thus save computation time. Sobol’s algorithm

as adopted as one of the most popular and effective algorithms

or generating quasi-random sequences [37] . 

The parameters values ( n, m, p, q, r ) were chosen in [2,15] × [2,

5] × [0, 1] × [0, 1] × [0,1] each parameter being uniformly sam-

led from its interval ( n and m were discretely sampled). The val-

es of n and m were limited to 15 for computational cost reasons.

s an indication for n = m = 15 , the basic grid network has 420

inks leading to 12,225,940 scenarios of three-link failures to anal-

se. 

For each set of parameter values, the simulations were per-

ormed as: 

1. Use the parameter values to generate an undirected graph

using the GREREC model ( Section 3.1 ) 

2. Check whether the graph is connected; if the graph is not

connected go to the next iteration. 
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Fig. 4. Examples of road network samples extracted from OpenStreetMap and anal- 

ysed: (a) Pacific Heights, San Francisco, (b) Levallois-Perret, Greater Paris and (c) 

West Kensington, London 
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Fig. 5. Nodal degree frequencies in the GREREC network structural pattern groups 

(box = 25th and 75th percentiles). 
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3. Select a random set of OD pairs in the network with proba-

bility r . 

4. Perform an analysis of the network robustness to single,

multiple, random and targeted link failures as well as an

analysis of the link criticality rankings correlation. 

.5. Validation using real road maps 

To validate the results of the analysis of the GREREC networks,

he same analysis was performed on 30 real network samples.

hese samples were extracted from the road networks of six urban

reas around the world: Johannesburg, London, New York, Paris,

an Francisco and Seville. Five samples were arbitrarily extracted

n each of these areas using bounding boxes defined by latitude

nd longitude bands of 0.01 width to obtain graphs of the same or-

er of magnitude as the GREREC networks analysed. To acquire the

amples, the Python package OSMnx [38] was used to download

rivable street network data within the chosen boundaries from

penStreetMap and automatically processed into length-weighted

onplanar graphs. In OpenStreetMap intersections of two divided

oads, small roundabouts and sometimes intersections where op-

osite streets are not perfectly aligned create clusters of nodes that

orrespond to single intersections in the real world. Hence, these

etwork samples slightly underestimate the number of high de-

ree intersections. For the sake of reproducibility, it was however

ecided to keep the existing models unaltered. Fig. 4 shows exam-

les of the graphs analysed. 

. Results 

The simulations were performed in R 3.4.4 and used the li-

raries randtoolbox and igraph for quasi-random number sequence

eneration and network analysis respectively. The R script was run

n seven days on the University of Nottingham’s high-performance

omputer, using in parallel twelve compute nodes with 2 × 20 core

rocessors (Intel Skylake 6138 2.0GHz) and 192GB memory each.

he simulations resulted in 161 connected GREREC networks anal-

sed in the following subsections. 

.1. Evaluation of the GREREC networks topology and patterns 

The topological indices presented in Section 3.2 were computed

o evaluate the topology of the networks generated. Furthermore,

he networks were categorised into structural pattern groups based

n the division of the values of p and q into three equally spaced

ntervals ( Table 1 ). As only one connected network was generated

ith a value of p inferior to 0.33 (low values of p are highly likely

o result in disconnected networks), this network was excluded

rom the structural pattern analysis since it can’t support a statisti-

al analysis. The distributions of the nodal degree in each of these

tructural pattern groups are summarised in Fig. 5 . 
Alpha, beta, gamma and the average degree provided the same

nformation as the correlation between these different values

anged from 0.98 to 1. Hence, regardless of the index considered,

he two extremes structures are the sparse structures of B1 and the

ery compact structures of C3 (i.e. lowest and highest connectivity

alues respectively in Table 1 ). 

The low degree heterogeneity of B1 and C1 (0.98 and 1.02 re-

pectively) suggest that both structures are rather homogeneous

ompared to the other ones. Indeed, B1 and C1 present a domi-

ant frequency (median superior to 35%) of 3-legged and 3 and 4-

egged intersections respectively, whereas the frequency peaks are

ess pronounced in the other groups ( Fig. 5 ). B1 represents sparse

tructures with a high proportion of 3-legged intersections that

rovides some ”regularity” to the structure. This group is close to

he warped parallel structure in [20] . B2 and B3 represent more

rganic structures with a mixture of vertical and horizontal links

nd shortcuts. C1 is the very ordered grid-like structure with a ma-

ority of vertical and horizontal links. Finally, C2 and C3 are more

ompact structures where an increasing proportion of shortcuts are

ntroduced in this grid-like structure. 

.2. Correlation between the network characteristics and robustness 

etrics in the GREREC networks 

To model single and multiple link failures, three types of sce-

arios were considered: single, two and three-link failures. The

obustness indicators of the networks generated in each scenario

ere computed using Eq. 4 . The mean robustness of each net-

ork to each type of failures was used as a general measure of

he network robustness to this type of failures. The robustness val-

es were also used to compute the link criticality indicators using

q. 5 . SLF, 2LF and 3LF based criticality rankings were compared

o the rankings derived from the combination of all of these sce-

arios (ALL) using Spearman’s correlation coefficient. These corre-

ation values evaluate the extent to which SLF (or 2LF, etc.) based

riticality measures represent the overall link criticality. The indi-

ators related to the impact of targeted attacks ( CRO BETWI , CRO RAND 

nd TA EI ) were computed using Eqs. 6 to 8 . 

All of these robustness metrics were evaluated against three

ypes of network characteristics: the network size (i.e. no. of nodes

n the network), topology (i.e. alpha, beta, gamma and the de-

ree distribution) and operational characteristics (i.e. proportion of

odes serving as OD pairs and heterogeneity of the link costs).

pearman’s coefficient was used to assess whether a monotonic re-

ationship existed between these variables ( Table 2 ). An analysis of

he distributions of the network attributes in the sample analysed

s provided in Appendix A.2 . 
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Table 1 

Topological characteristics of the GREREC networks generated depending on p (probability of keeping horizontal and vertical 

edges) and q (probability of generating shortcuts). 

Network group p q α β γ 〈 Degree 〉 h ∗∗
Degree 

B1 [0.33, 0.66] [0, 0.33) 0.291(0.11) 1.51(0.26) 0.538(0.066) 3.02(0.53) 0.969(0.32) 

B2 [0.33, 0.66] [0.33, 0.66] 0.446(0.14) 1.82(0.31) 0.637(0.090) 3.64(0.62) 1.413(0.15) 

B3 [0.33, 0.66] (0.66, 1] 0.543(0.11) 2.01(0.24) 0.699(0.068) 4.02(0.48) 1.753(0.20) 

C1 (0.66, 1] [0, 0.33) 0.476(0.09) 1.88(0.21) 0.655(0.058) 3.77(0.41) 1.021(0.19) 

C2 (0.66, 1] [0.33, 0.66] 0.612(0.11) 2.14(0.26) 0.745(0.070) 4.26(0.51) 1.336(0.15) 

C3 (0.66, 1] (0.66, 1] 0.713(0.11) 2.32(0.29) 0.812(0.067) 4.64(0.58) 1.619(0.30) 

mean(standard deviation); ∗∗ Degree heterogeneity 

Table 2 

Correlation ( R S ) between the network characteristics and robustness metrics in the set of GREREC networks analysed. ns , ∗ , ∗∗ and ∗∗∗ denote the significance 

at p > 0.05, p < 0.05, p < 0.005 & p < 0.001 respectively. 

Network characteristics 

Network size ( N ) Network 

connectivity 

( α, β , γ ) 

Degree 

heterogeneity 

Link costs 

heterogeneity 

Proportion of nodes 

being OD points 

Mean robustness to SLF 0.92 ∗∗∗ [0.72, 0.83] ∗∗∗ 0.38 ∗∗∗ -0.33 ∗∗∗ -0.10 ns 

Mean robustness to 2LF 0.93 ∗∗∗ [0.72, 0.83] ∗∗∗ 0.38 ∗∗∗ -0.33 ∗∗∗ -0.10 ns 

Mean robustness to 3LF 0.93 ∗∗∗ [0.72, 0.83] ∗∗∗ 0.39 ∗∗∗ -0.33 ∗∗∗ -0.10 ns 

SLF vs ALL (1) 0.16 ∗ [-0.04, 0.00] ns -0.19 ∗ -0.16 ∗ 0.86 ∗∗∗

2LF vs ALL 0.41 ∗∗∗ [0.19, 0.24] ∗ -0.05 ns -0.16 ∗ 0.66 ∗∗∗

3LF vs ALL 0.73 ∗∗∗ [0.63, 0.71] ∗∗∗ 0.45 ∗∗∗ -0.26 ∗∗∗ -0.35 ∗∗∗

Robustness to a BETWI (2) -0.28 ∗∗∗ [0.29, 0.43] ∗∗∗ 0.16 ∗ 0.06 ns 0.20 ∗

Robustness to a RAND 

(3) 0.20 ∗ [0.78, 0.87] ∗∗∗ 0.58 ∗∗∗ -0.10 ns 0.17 ∗

Targeted attack extended impact 0.59 ∗∗∗ [0.68, 0.74] ∗∗∗ 0.63 ∗∗∗ -0.15 ns -0.00 ns 

(1) Correlation of the link criticality rankings derived from single (SLF), two (2LF) and three (3LF) link failures, and the combination of all three (ALL); (2) 

Interactive betweenness attack; (3) Representative random attack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Correlation ( R S ) between the link criticality rankings 

derived from different scenarios: single (SLF), two (2LF) 

and three (3LF) link failures and the combination of all 

three (ALL) 

SLF vs ALL 2LF vs ALL 3LF vs ALL 

Min 0.460 0.698 0.878 

Median 0.985 0.999 0.999 

Mean 0.934 0.983 0.995 

Max 1.000 1.000 1.000 
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Concerning the network connectivity, the highest correlation

value in absolute was systematically obtained with beta (or its

equivalent the average degree). β is hence the preferred connec-

tivity indicator for the plots of this paper except for the robustness

to random and targeted attacks that had the strongest correlation

with γ . 

4.2.1. Mean robustness to single, two and three link failures 

The proportion of nodes serving as OD points was not corre-

lated with the network mean robustness to SLFs, 2LFs and 3LFs

(| R S | < 0.20 and p -value > 0.05). The degree and link cost hetero-

geneities both showed weak correlations with the network mean

robustness to SLFs, 2LFs and 3LFs ( Table 2 ). The network character-

istics that exhibited the strongest correlation with the mean net-

work robustness were the network size and connectivity ( Table 2 )

suggesting a potential relationship between these values showed

in Fig. 6 . 

Two domains appear in the plots of Fig. 6 .a. On the left side, the

smallest networks exhibit a large variability in their mean robust-

ness to SLFs, 2LFs and 3LFs while on the right side, the mean ro-

bustness of the largest networks seems independent of N . A visual

assessment suggested that the change point for SLB, 2LB and 3LB

could be N = 30 , N = 35 , N = 40 respectively. Furthermore, an as-

sessment of the results across the different scenarios showed that

the average mean robustness of the small networks (less than 30

nodes) went from 96% (sd = 0.04) in SLFs to 87% (sd = 0.14) in

3LFs. In contrast, the average mean robustness of the large net-

works ( N > 30) only decreased from 99% (sd = 0.01) in SLFs to

98% (sd = 0.02) in 3LFs. 

Two domains are also present in the data of Fig. 6 .b that could

be well represented by a piecewise linear model ( R 2 ≈ 0.89).

Hence, the mean network robustness linearly increased with β , the

slope being sharper before the breakpoint ( β ≈ 1.55). Besides, the

gaps between the mean robustness of the networks to SLFs, 2LFs

and 3LFs gradually decreased with β . The average mean robustness
f the weakly connected networks ( β ≤ 1.55) went from 93% (sd

 0.04) in SLFs to 77% (sd = 0.16) in 3LFs while in the highly con-

ected networks it only decreased from 99% (sd = 0.01) to 98% (sd

 0.02). 

.2.2. Correlation between the link-criticality rankings 

The distributions of the link ranking correlation values are sum-

arised in Table 3 . These results indicate that SLF-based criticality

ankings were generally very strongly correlated with the rankings

ased on all scenarios (the mean correlation value being 0.934)

owever low correlation values were also observed (e.g. 0.460). 2LF

nd 3LF based rankings showed even stronger mean correlations

ith the rankings based on ALL (0.983 and 0.995 respectively). 

Table 2 shows that SLF vs ALL was not correlated with the net-

ork attributes (| R S | < 0.20) except for the proportion of nodes

erving as OD points ( R S = 0 . 86 ). The correlations between 2LF vs

LL and the network attributes were weak at best (| R S | < 0.40) ex-

ept for the proportion of nodes serving as OD points ( R S = 0 . 66 ).

n the case of 3LF-based criticality rankings, the correlation with

he ratio of OD points to nodes became weak and negative ( R S =
0 . 35 ) while other network attributes started to play a role (i.e.

he correlation of 3LF vs ALL with N and β were 0.73 and 0.71

espectively). 
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Fig. 6. Mean robustness of the GREREC networks to single, two and three-link failures depending on their (a) size and connectivity and (b) connectivity. 
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The influence of the network size on the rankings correlation is

hown in Fig. 7 .a, where it can be seen that there were no signifi-

ant relationship between the number of nodes in the network and

oth SLF vs ALL and 2LF vs ALL. In contrast, the minimum value

f 3LF vs ALL increased with N . The influence of the proportion

f nodes being OD points on the rankings correlation is shown in

ig. 7 .b, where it can be observed that the accuracy of SLF-based

ankings increased with r OD i.e. when r OD ≤ 0.5 the mean value of

LF vs ALL is 0.87 (sd = 0.12) but reaches 0.99 (sd = 0.01) when

 OD > 0.5. 

.2.3. Extended impact of targeted attacks 

None of the network attributes demonstrated a strong correla-

ion with the network robustness to a dynamic betweenness at-

ack (| R S | < 0.43). In contrast, the network robustness to random

ttacks demonstrated a strong correlation with the network con-

ectivity (0.78 ≤ R S ≤ 0.87), a moderate correlation with the de-

ree heterogeneity ( R S = 0.58) and no correlation or an uncertain

eak correlation with the other attributes ( p -value > 0.001). The

esults are similar for the targeted attack extended impact except

hat the network size demonstrated a moderate correlation with

A EI ( R S = 0 . 59 ). 

Fig. 8 shows the influence of the network connectivity, size and

tructural pattern group membership on both CRO RAND and TA EI . In

ig. 8 .a the largest networks seemed to follow a linear model rel-

tively supported by a regression performed on the networks with
ore than 10 nodes ( R 2 = 0 . 76 ). In contrast, the linear model ap-

eared less relevant for TA EI ( R 2 = 0 . 45 ). 

.3. Comparison with the real road networks 

.3.1. Topology of the road network samples 

As the topology of a network can be characterised by its degree

istribution, the average and standard deviation of the degree

istributions in the GREREC and real networks ( Fig. 9 ) were used

or comparing their topology. The real network topologies ranged

rom tree-like structures ( Fig. 4 .c) to more compact and ordered

rid-like structures ( Fig. 4 .a) with average degrees of 2.33 and 3.32

espectively. In Fig. 9 , it can be seen that the topology of the real

etworks was close to the topology of some of the GREREC net-

orks but that the latter also contained a large range of networks

ith higher average degree and degree heterogeneity values.

urthermore, the comparison with Table 1 and Fig. 5 suggests

hat B1, B2, C1 and C2 were the GREREC structural pattern groups

hat are the closest to the real networks, while B3 and C3 present

igher proportions of high degree nodes (superior to six) than

eal networks. Hence, the GREREC model better represents real

oad networks when the probability of generating shortcuts is low

 q < 0.66). 
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Fig. 7. Correlation of the link criticality rankings derived from single (SLF), two (2LF) and three (3LF) link failures and the combination of all three (ALL) depending on (a) 

the network size and (b) the proportion of nodes serving as OD points in the GREREC networks 

Table 4 

Correlation ( R S ) between the network characteristics and robustness metrics in the road network samples analysed. ns , ∗ , ∗∗ and ∗∗∗ denote the significance at 

p > 0.05, p < 0.05, p < 0.005 & p < 0.001 respectively. 

Network characteristics 

Network size ( N ) Network 

connectivity 

( α, β , γ ) 

Degree 

heterogeneity 

Link costs 

heterogeneity 

Proportion of nodes 

being OD points 

Mean robustness to SLF 0.66 ∗∗∗ [0.74, 0.83] ∗∗∗ -0.20 ns -0.55 ∗∗ -0.17 ns 

Mean robustness to 2LF 0.67 ∗∗∗ [0.73, 0.82] ∗∗∗ -0.20 ns -0.57 ∗∗ -0.17 ns 

Mean robustness to 3LF 0.68 ∗∗∗ [0.72, 0.81] ∗∗∗ 0.17 ns -0.59 ∗∗∗ -0.16 ns 

SLF vs ALL (1) 0.28 ns [0.20, 0.21] ns -0.08 ns -0.29 ns 0.59 ∗∗∗

2LF vs ALL 0.41 ∗ [0.22, 0.24] ns -0.10 ns -0.39 ∗ 0.40 ∗

3LF vs ALL 0.35 ns [0.01, 0.02] ns -0.00 ns -0.30 ns -0.25 ns 

Robustness to a BETWI (2) -0.43 ∗ [0.53, 0.67] ∗∗ -0.11 ns 0.43 ∗ 0.01 ns 

Robustness to a RAND 

(3) 0.27 ns [0.70, 0.83] ∗∗∗ -0.18 ns 0.31 ∗ 0.11 ns 

Targeted attack extended impact 0.30 ns [0.48, 0.52] ∗∗ -0.22 ns -0.18 ns 0.24 ns 

(1) Correlation of the link criticality rankings derived from single (SLF), two (2LF) and three (3LF) link failures, and the combination of all three (ALL); (2) 

Interactive betweenness attack; (3) Representative random attack 
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3LFs. 
4.3.2. Correlation of the network robustness metrics with the 

network characteristics in the real networks 

The correlation between the networks attributes and robustness

metrics was also evaluated in the real network models ( Table 4 ).

These correlations were generally consistent with the correlation

observed with the GREREC networks ( Table 2 ) as they often had

the same signs, ranges and p -values. 

Although the correlations of the network mean robustness in

SLFs, 2LFs and 3LFs with the network size were lower in the real

networks (0.67 in average) than in the GREREC networks (0.93
n average), the network size and connectivity remained the only

arameters strongly correlated to the mean network robustness.

urthermore, the smallest real networks also exhibited a large

ariability in their mean robustness to SLFs, 2LFs and 3LFs while

he robustness of the largest networks seemed independent of N .

he average mean robustness of the small real networks ( N ≤ 30)

ent from 91% (sd = 0.04) in SLFs to 73% (sd = 0.10) in 3LFs,

hile the average mean robustness of the large networks ( N > 30)

nly decreased from 98% (sd = 0.01) in SLFs to 95% (sd = 0.04) in
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Fig. 8. Relation between the robustness to random dismantling processes (i.e. cumulative robustness to random attacks) and the extended impact of targeted attacks and 

three networks attributes: (a and b) the network connectivity and size and (c and d) the structural pattern group membership. box = 25th and 75th percentiles, notch 

= ±1 . 58 IQR/ 
√ 

n . 

Fig. 9. Comparison of the topology of the GREREC and real networks analysed. The 

degree heterogeneity is the standard deviation of the degree distribution in the net- 

work. 
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However, in the real networks, the correlation of the mean ro-

ustness to single and multiple link failures with the degree het-

rogeneity was uncertain ( p -value > 0.05) while the correlation

ith the link cost heterogeneity appeared stronger (-0.57 in aver-
ge). Besides, the piecewise linear model connecting the network

ean robustness and connectivity ( Fig. 6 .b) remained relevant for

he real networks but less accurate ( R 2 ≈ 0.59 in Fig. 10 .a). 

In the real networks, the correlation of the robustness to the

nteractive betweenness attack with the network parameters re-

ained weak or moderate at best ( Table 4 ). The GREREC and real

etwork correlation results were also similar for the robustness to

andom dismantling processes except that the latter was now un-

orrelated with the degree heterogeneity. In contrast, the correla-

ion of the extended impact of targeted attacks with the network

ize, connectivity and degree heterogeneity went from being strong

n the GREREC networks to being not significant, moderate and not

ignificant, respectively. 

The linear model connecting network connectivity and robust-

ess to random dismantling processes remained relevant ( R 2 =
.87 in Fig. 10 .b) for the real networks but with a steeper slope

f 1.1 compared to 0.49 for the GREREC networks. 

Table 4 shows that SLF vs ALL, 2LF vs ALL and 3LF vs ALL were

t best weakly correlated with the network attributes (| R S | < 0.40

nd p -value > 0.005) apart from the proportion of nodes serving

s OD points that was strongly correlated with SLF vs ALL ( R S =
 . 59 ). This is also consistent with the GREREC results except that

LF vs ALL was also strongly correlated with the network size and

onnectivity in the GREREC networks. 
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Fig. 10. Influence of the network connectivity (beta and gamma) on the (a) mean robustness to single, two and three-link failures and (b) robustness to random dismantling 

processes (i.e cumulative robustness to random attacks) in the road network samples 

Table 5 

Correlation ( R S ) between the link criticality rankings 

derived from single (SLF), two (2LF) and three (3LF) 

link failures and the combination of all three (ALL) in 

the road network samples 

SLF vs ALL 2LF vs ALL 3LF vs ALL 

Min 0.803 0.998 0.974 

Median 0.993 0.999 0.995 

Mean 0.973 0.998 0.995 

Max 1.000 1.000 1.000 
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The results of the link criticality rankings comparisons in the

real networks are summarised in Table 5 . As with the GREREC net-

works ( Table 3 ), SLF-based criticality rankings were generally very

strongly correlated with the rankings based on all scenarios (the

mean correlation being 0.973) while 2LF and 3LF based rankings

showed even stronger mean correlations with the rankings based

on ALL (0.999 and 0.995 respectively). 

5. Discussion 

The comparison of the topology of the GREREC and real road

networks suggests that the former contain a wider set of proper-

ties. For example, the structural patterns groups B3 and C3 have

higher proportions of six to eight degree nodes than real networks.

Although these networks may be rare in the real-world due to
osts and land-use constraints, their inclusion in this analysis re-

ains useful to assess the benefits in terms of robustness of de-

igning and building networks with a higher proportion of inter-

ections connecting more than six streets. 

The robustness analysis performed on both sets of networks al-

owed determining the influence of certain network attributes on

etwork robustness. Firstly, the variations of the correlation be-

ween the robustness metrics and the network attributes ( Table 2

nd 5 ) depending on the aspect of robustness considered (mean

obustness, link criticality and targeted attacks extended impact)

eflect the fact that network robustness is a complex and multidi-

ensional problem in which different network characteristics play

ore or less important roles depending on the aspect of robust-

ess considered. Hence, none of the network attributes on its own

s sufficient to explain the road network robustness. 

.1. Influence of the link cost and degree heterogeneities on network 

obustness 

Among the indicators considered, the link cost heterogeneity

i.e. the standard deviation of the link cost distribution) was the

nly indicator that showed no significant correlation with the ro-

ustness metrics of the GREREC networks. It is, however, difficult

o conclude that the road network robustness is generally indepen-

ent of the link cost heterogeneity as this could be specific to the

ndicator tested or to the process used to generate the link costs in

he GREREC model. Indeed, the link cost heterogeneity of the real



P.Y.R. Sohouenou, P. Christidis and A. Christodoulou et al. / International Journal of Critical Infrastructure Protection 29 (2020) 100353 13 

n  

m  

p  

t  

t  

o  

p

 

d  

a  

b  

m  

r  

t  

t  

g  

(  

(  

n  

i  

b

 

t  

b  

o  

t  

t  

g  

t  

t  

n  

a  

s  

t  

c  

n  

c

5

r

 

w  

(  

c  

t  

d  

e  

0  

d  

a  

a  

(  

i

 

e  

d  

c  

b  

2  

C  

t  

A  

d  

n  

t  

n  

t  

t

 

n  

s  

m  

t  

f  

f  

I  

s  

a  

a

 

b  

a  

H  

f  

s  

n  

t  

a  

b  

n  

m  

S  

r  

n

 

t  

p  

a  

r  

o  

w  

a

 

a  

p  

t  

(  

r  

S  

S  

n

 

a  

t  

n  

u  

n  

t  

u  

a

5  

r

 

g  

s  

c  

r  

w  

p  
etworks had a stronger (but still moderate) correlation with the

ean robustness to single, two and three link failures. Hence, the

resent results show that the link cost heterogeneity has a weak

o moderate influence on the network robustness and more impor-

antly that the links travel costs are much less important than the

ther parameters considered (i.e. the network topology and pro-

ortion of nodes serving as OD points) in terms of robustness. 

In the GREREC networks, the degree heterogeneity (i.e. the stan-

ard deviation of the degree distribution) was positively moder-

tely correlated with network average robustness (i.e. mean ro-

ustness to SLFs, 2LFs and 3LFs and robustness to random dis-

antling processes). This correlation could not be verified in the

eal network samples. Considering the strong correlation between

he network connectivity and robustness in both sets of networks,

his difference may be explained by the fact the degree hetero-

eneity and connectivity were correlated in the GREREC networks

 R S = 0 . 64 , p -value < 10 15 ) but uncorrelated in the real graphs

 R S = −0 . 21 , p -value = 0.256). This highlights one of the weak-

esses of the GREREC model where higher degree heterogeneity

s often paired with higher connectivity while it may not always

e the case in the real-world. 

The present results may explain why previous research found

hat the degree heterogeneity positively impacted road network ro-

ustness. Considering the tail of degree distribution as an indicator

f the degree heterogeneity, [14] noticed that the latter was posi-

ively correlated with the network robustness in random disman-

ling processes. The suitability of this indicator to reflect the de-

ree heterogeneity is however problematic for two reasons. Firstly,

he accuracy of this index depends on whether degree distribution

ails (for degrees superior to three) can be approximated by expo-

ential decays. This is not the case for example in cities presenting

 dominant square-grid structure (e.g. San Francisco) where four-

treet intersections are more frequent than three-street intersec-

ions. Secondly, tails also contain information about the network

onnectivity as lower-decay rates also imply that more high-degree

odes are present in the network and therefore that the network

onnectivity and robustness are higher. 

.2. Influence of the network size and connectivity on the network 

obustness to single, multiple, random and targeted link failures 

The analysis showed that a linear model connected the net-

ork density and robustness in both the GREREC ( Fig. 8 .a) and real

 Fig. 10 .b) networks. These observations are consistent with the

onclusions of [14] who also found a linear relationship between

hose metrics although they considered a different robustness in-

icator. The steeper slope observed in the real networks can be

xplained by the smaller range of γ in this set of networks [0.38,

.58] compared to [0.41, 0.91] in the GREREC networks since the

ata in Fig. 8 .a suggests that the slope of the linear model would

lso be steeper in this range. Hence, the network robustness to

 random dismantling process linearly increases with the density

i.e. proportion of possible links or cycles that are actually present

n the network). 

In both the GREREC and the real networks, the weak to mod-

rate correlation observed between the network robustness to a

ynamic betweenness attack ( CRO BETWI ) and the connectivity indi-

ators ( α, β and γ ) contrasts with the strong correlation found

etween the network connectivity and its mean robustness to SLFs,

LFs, 3LFs and random dismantling processes. This may be because

RO BETWI - like any other measure of the impact of a targeted at-

ack - essentially looks at the impact in the worst-case scenario.

s two networks can perform similarly in a targeted attack but

ifferently in a wider range of disturbances, such measures may

ot be sufficient on their own to compare the robustness (ability

o maintain functionality despite various disturbances) of different
etworks. It is, therefore, more meaningful to study and quantify

he impact of targeted attacks in comparison with other attacks in

he same network. 

The positive correlations observed between the network con-

ectivity, CRO RAND and the extended impact of targeted attacks

uggest that although highly-connected networks are likely to be

ore robust to random failures than sparse networks, the ex-

ended impact of a targeted attack would also be larger in the

ormer. Highly connected networks hence offer more opportunities

or malicious attacks to be more detrimental than random attacks.

n practice, this means that in sparse networks most of the links

hould equally be protected as the impacts of random and targeted

ttacks are close, whereas high-betweenness links should be given

 higher priority for protection in complex networks. 

However, network dismantling processes and the related ro-

ustness indicators lack applicability as real-life perturbations (car

ccidents, floods or sabotage actions) rarely follow this mechanism.

ence, the present study also considered single and multiple link

ailures, which allowed determining the influence of the network

ize (number of intersections) on the network robustness. Like the

etwork connectivity, the network size was strongly correlated to

he mean robustness to SLFs, 2LFs and 3LFs in both the GREREC

nd the real networks. These strong correlations can be explained

y the fact that both parameters increase the number of alter-

atives routes available to substitute the disrupted ones. Further-

ore, the correlation of the network size with the robustness to

LFs, 2LFs and 3LFs but lack of correlation with the robustness to

andom dismantling processes suggests that most of the MLFs sce-

arios had a local impact. 

The present results also showed that the relationship between

he network connectivity and mean robustness tends to follow a

iecewise linear model in the case of SLFs, 2LFs and 3LFs (Figs 5.b

nd 10.a), in which the effect of the network density on the mean

obustness decreases to almost zero after the breakpoint. The value

f this breakpoint slightly increased from β = 1.41 in the real net-

orks to β = 1.55 in the GREREC graphs and should, therefore, be

round those values. 

Finally, if the conclusion that single and multiple link failures

re more harmful in small and sparse networks was expected, the

resent research still provided quantitative estimates showing that

he impact of SLFs and 3LFs are comparable in large networks

more than 30 nodes) while their impacts differ of 9% (18% in the

eal networks) in robustness on average in the small networks.

imilarly, in the sparse networks ( β < 1.55) the mean impact of

LFs and 3LFs differed of 16% (7% in the real networks) in robust-

ess but only of 1% in the compact networks. 

Similar behaviours could be expected for scenarios involving

 greater number of failed links (four-link failures, etc.) although

he size and connectivity thresholds may slowly increase with the

umber of failed links considered. Therefore, when designing or

pgrading a road network, the addition of redundant routes in the

etwork (by building additional roads and intermediate intersec-

ions) is an efficient way to improve the network mean robustness

p to a certain size ( N ≈ 40) and connectivity ( β ≈ 1.5) threshold

fter which the robustness enhancement is limited. 

.3. Influence of the ratio of OD points to nodes on the link criticality

ankings 

The comparison of the link criticality rankings derived from sin-

le, two and three link failures and the combination of all three

howed that these rankings depend on the scenarios and network

onsidered in both the GREREC and the real networks. The low cor-

elation values obtained in some cases (e.g. the minimum value

as 0.460 in the GREREC networks) indicate that SLFs and ALL can

rovide substantially different lists of links which are most critical
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to the network performance in case of disruption. The minimum

value (0.803) obtained in the real networks was certainly higher

than in the GREREC model because the set of real networks (30)

was smaller than the sample of GREREC networks (161). These re-

sults hence confirm and give more depth to the conclusions of [3] :

the most critical links when multiple-link failures occur are not

simply the combination of the most critical links with single-link

failures. 

The present study showed that SLF vs ALL was significantly pos-

itively correlated with the proportion of nodes being OD points in

both the GREREC and real networks. Furthermore, SLF-based rank-

ings were well correlated with the rankings based on all scenarios

in networks with a high proportion of nodes serving as OD points

( r OD > 0.5). In such networks, OD pairs are more likely to be orig-

inally connected by direct routes for which the alternatives routes

are much more costly or don’t exist. In these networks, SLFs are

hence very critical while the contribution of MLF scenarios to the

link criticality is limited. In contrast, SLF-based rankings are likely

to misrepresent the overall link criticality in networks with a low

ratio of OD points to nodes where SLFs are less relevant due to the

availability of several “equivalent routes”. 

Although the correlation between 3LF and ALL based rankings

remained generally high (above 0.878 in the GREREC networks),

the variability of the correlation between both rankings further de-

creased with the network size. This may be explained by the fact

that most of 3LF scenarios are likely to be very critical in small

networks resulting in more difficulty in distinguishing between the

impacts of these scenarios on the network performance and thus

in ranking the links. 

One practical implication of these findings is that the classi-

cal method assessing link criticality based exclusively on SLFs is

likely to misrepresent the overall link criticality in road networks

where the population (demand) is not homogeneously distributed

among all the intersections. The application of this method out-

side of this case could lead to inefficient prevention and restora-

tion measures in the advent of events disrupting several road seg-

ments (e.g. flooding) or several events affecting different parts of

the network at the same time (e.g. a car accident could cause the

unavailability of a road while a bridge is closed for repair work in

another part of the network). 

On the other hand, the brute-force approach - testing all pos-

sible scenarios of MLFs - is limited due to its computational cost

and only appropriate for small to medium (sub)networks. Consid-

ering this, two-link failures seemed to provide a possible solution

balancing accuracy and computational cost (the mean values of 2LF

vs ALL being 0.981 and 0.998 for the GREREC and real networks re-

spectively compared to 0.933 and 0.973 for SLF vs ALL) at least to

represent the overall link criticality in failures of up to three links.

Future research could seek to determine more precisely when it

is necessary to consider 2LF, 3LF, 4LF, etc. and accordingly develop

less computationally expensive methods for link criticality ranking.

6. Conclusions 

The present study is an attempt to find universal insights into

road networks robustness to single, multiple, random and tar-

geted link failures. For this purpose, a review of studies exam-

ining real-road networks topologies and patterns was conducted

to identify the common properties of road graphs including ap-

proximate planarity, negligible proportion of intersections with six

or more connections and heterogeneity in roads functionality and

performance. On this basis, the GREREC model was developed to

randomly generate a variety of abstract networks presenting the

topological and operational characteristics observed in real-road

networks, on which a robustness analysis was performed. This
nalysis was also reproduced on a set of real network samples for

alidation. 

The results showed that the GREREC model can generate net-

orks with topologies similar to real maps (ranging from tree-like

tructures to more compact and ordered grid-like structures) but

lso more diverse topologies presenting, for example, higher pro-

ortions of intersections connecting six to eight streets than real

aps. Hence, the analysis performed on both sets of networks al-

owed to assess the robustness of real networks but also networks

hat could be designed and built for greater resilience. As the sce-

arios considered model a large range of disruptive events leading

o the closure of sets of roads (e.g. serious car accidents, bridge

ailures and repair works), the results provide a framework to un-

erstand the potential influence of different network attributes on

ifferent aspects of road network robustness to such events. 

The network size and connectivity strongly influenced the net-

ork mean robustness to multiple-link failures and allowed to dis-

inguish small (sparse) networks where the impact of MLFs heavily

epend on the attack size from large (compact) networks where

he increased attack size has a negligible effect. The results also

howed that the addition of redundant routes in road networks

through additional roads and intermediate intersections) is an ef-

cient way to enhance the network robustness to multiple-link

ailures up to a certain size and connectivity threshold. 

As the construction of new roads requires significant invest-

ents, the proposed link criticality indicator can be used as a tool

o identify and prioritise the road segments for which alterna-

ives connections should be built. This indicator should, however,

e used carefully as the present research shows that link critical-

ty rankings are sensitive to the type of disruption scenarios con-

idered (i.e. single or multiple link failures) and that the network

ttribute controlling the correlation between SLF-based rankings

nd the rankings based on all scenarios is the ratio of OD points

o nodes. The classical method assessing link criticality based ex-

lusively on single-link failures is hence likely to misrepresent the

verall link criticality in road networks where the population (de-

and) is not homogeneously distributed among all the intersec-

ions, which could lead to inefficient prevention and restoration

easures in the advent of events disrupting several road segments

r several events affecting different parts of the network at the

ame time. 

The comparison of the impact of targeted and random attacks

howed that highly-connected networks are more robust but also

ffers more opportunities for malicious attacks to be more harmful

han random failures. The identification and protection of the most

ritical road segments are hence more crucial in compact road net-

orks than in sparse networks where most links are equally im-

ortant to the network performance. 

Ultimately, the present study provides findings that should be

f interest to researchers, industry professionals and policy-makers

iming to perform robustness and resilience analyses of road net-

orks. The GREREC model and the results presented here could be

sed as a relevant null model to benchmark the robustness of road

etworks. 

Although limited by computational capacity, the approach

dopted - that consists in analysing a large set of randomly gen-

rated transport networks - is scalable and probably applicable to

ther transport networks (using suitable random network models).

uture works could hence extend this approach to other road net-

ork performance metrics or other transport modes. 
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ig. A.1. Connectedness of the GREREC model depending on the dimensions m and n of t

nd the parameters p and q 
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Fig. A.2. Histograms of the network attributes 
ppendix 

1. Connectedness of the GREREC model 

As the GREREC model can generate disconnected networks, the

robability of the networks being connected depending on the

arameters n, m, p and q was estimated through a Monte Carlo

ethod (500 simulations per set of values). The results are shown

n Fig. A.1 . 
he graph (i.e. number of nodes per row and columns in the rectangle respectively) 
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Fig. A.3. Relationship between the network attributes in the set of GREREC networks analysed. 
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As shown in Fig. A.1 , the values of p and q for which the graphs

ere connected with a certain probability increased with their size

controlled by m and n ). Furthermore, p plays a more important

ole than q , as the probability of the graph being connected ex-

eeds 48% for p ≥ 0.6 regardless of q . This is because the shortcuts

lone are not sufficient to connect the network nodes since they

nly depart from certain nodes (see rule 3) and 4) in the proce-

ure in Section 3.1 ), whereas horizontal and vertical edges depart

rom every node. 

2. The attribute space of the set of GREREC networks analysed 

A Quasi-Monte Carlo method was used to obtain a sample of

etworks that homogeneously covered the parameter space of the

REREC model, which however didn’t necessarily imply that the

olume of the network attributes would be also homogeneously

overed. This appendix evaluates the distribution of the attribute

alues in the set of networks analysed to verify if the possible at-

ribute values were well represented in this sample. Fig. A.2 shows

he histograms of the network attributes considered in this study.

t can be observed that the distributions were generally well-

pread in their domains. The largest networks were less repre-

ented because they correspond to high values of m and n (the

imensions of the rectangular grid). The lowest values of α, β and

were underrepresented because they correspond to unconnected

raphs. As an indication the minimum number of links required to

onnect a planar graph of N nodes is N − 1 [21] . 

The relationships between the network attributes are shown in

ig. A.3 , where it can be seen that these attributes were generally

ncorrelated. 
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