45 research outputs found

    Microfocus X-ray sources for 3D microtomography

    Full text link
    An analytic model for the performance of cone beam microtomography is described. The maximum power of a microfocus X-ray source is assumed to be approximately proportional to the focal spot size. Radiation flux penetrating the specimen is predicted by a semi-empirical relation which is valid for X-ray energies less than 20 keV. Good signal to noise ratio is predicted for bone specimens of 0.1 to 10 mm when scanned at the optimal energy. A flux of about 1 x 1010 photons/mm2/s is identified for 0.2 mm specimens. Cone beam volumetric microtomography is found to compare favorably with synchrotron based methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31116/1/0000012.pd

    Comparison of I-131 Radioimmunotherapy Tumor Dosimetry: Unit Density Sphere Model Versus Patient-Specific Monte Carlo Calculations

    Full text link
    High computational requirements restrict the use of Monte Carlo algorithms for dose estimation in a clinical setting, despite the fact that they are considered more accurate than traditional methods. The goal of this study was to compare mean tumor absorbed dose estimates using the unit density sphere model incorporated in OLINDA with previously reported dose estimates from Monte Carlo simulations using the dose planning method (DPMMC) particle transport algorithm. The dataset (57 tumors, 19 lymphoma patients who underwent SPECT/CT imaging during I-131 radioimmunotherapy) included tumors of varying size, shape, and contrast. OLINDA calculations were first carried out using the baseline tumor volume and residence time from SPECT/CT imaging during 6 days post-tracer and 8 days post-therapy. Next, the OLINDA calculation was split over multiple time periods and summed to get the total dose, which accounted for the changes in tumor size. Results from the second calculation were compared with results determined by coupling SPECT/CT images with DPM Monte Carlo algorithms. Results from the OLINDA calculation accounting for changes in tumor size were almost always higher (median 22%, range -1%-68%) than the results from OLINDA using the baseline tumor volume because of tumor shrinkage. There was good agreement (median -5%, range -13%-2%) between the OLINDA results and the self-dose component from Monte Carlo calculations, indicating that tumor shape effects are a minor source of error when using the sphere model. However, because the sphere model ignores cross-irradiation, the OLINDA calculation significantly underestimated (median 14%, range 2%-31%) the total tumor absorbed dose compared with Monte Carlo. These results show that when the quantity of interest is the mean tumor absorbed dose, the unit density sphere model is a practical alternative to Monte Carlo for some applications. For applications requiring higher accuracy, computer-intensive Monte Carlo calculation is needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90433/1/cbr-2E2011-2E0965.pd

    Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism s

    Get PDF
    ABSTRACT Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structurefunction relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarinswith a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (k cat /K M ) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl) coumarin (7-EFC), followed by 7-methoxy-4-(trifluoromethyl) coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-p interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    An Integrated Approach for Finding Overlooked Genes in Shigella

    Get PDF
    Background: The completion of numerous genome sequences introduced an era of whole-genome study. However, many genes are missed during genome annotation, including small RNAs (sRNAs) and small open reading frames (sORFs). In order to improve genome annotation, we aimed to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery. Methodology/Principal Findings: We identified 64 sRNAs in Shigella, which were experimentally validated in other bacteria based on sequence conservation. We employed computer-based and tiling array-based methods to search for sRNAs, followed by RT-PCR and northern blots, to identify nine sRNAs in Shigella flexneri strain 301 (Sf301) and 256 regions containing possible sRNA genes. We found 29 candidate sORFs using bioinformatic prediction, array hybridization and RT-PCR verification. We experimentally validated 557 (57.9%) DOOR operon predictions in the chromosomes of Sf301 and 46 (76.7%) in virulence plasmid.We found 40 additional co-expressed gene pairs that were not predicted by DOOR. Conclusions/Significance: We provide an updated and comprehensive annotation of the Shigella genome. Our study increased the expected numbers of sORFs and sRNAs, which will impact on future functional genomics and proteomics studies. Our method can be used for large scale reannotation of sRNAs and sORFs in any microbe with a known genom

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore