24,129 research outputs found

    Carsey Perspectives: Polling and the New Hampshire Primary

    Get PDF

    Algebraic and combinatorial aspects of sandpile monoids on directed graphs

    Get PDF
    The sandpile group of a graph is a well-studied object that combines ideas from algebraic graph theory, group theory, dynamical systems, and statistical physics. A graph's sandpile group is part of a larger algebraic structure on the graph, known as its sandpile monoid. Most of the work on sandpiles so far has focused on the sandpile group rather than the sandpile monoid of a graph, and has also assumed the underlying graph to be undirected. A notable exception is the recent work of Babai and Toumpakari, which builds up the theory of sandpile monoids on directed graphs from scratch and provides many connections between the combinatorics of a graph and the algebraic aspects of its sandpile monoid. In this paper we primarily consider sandpile monoids on directed graphs, and we extend the existing theory in four main ways. First, we give a combinatorial classification of the maximal subgroups of a sandpile monoid on a directed graph in terms of the sandpile groups of certain easily-identifiable subgraphs. Second, we point out certain sandpile results for undirected graphs that are really results for sandpile monoids on directed graphs that contain exactly two idempotents. Third, we give a new algebraic constraint that sandpile monoids must satisfy and exhibit two infinite families of monoids that cannot be realized as sandpile monoids on any graph. Finally, we give an explicit combinatorial description of the sandpile group identity for every graph in a family of directed graphs which generalizes the family of (undirected) distance-regular graphs. This family includes many other graphs of interest, including iterated wheels, regular trees, and regular tournaments.Comment: v2: Cleaner presentation, new results in final section. Accepted for publication in J. Combin. Theory Ser. A. 21 pages, 5 figure

    Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    Full text link
    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure

    Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon

    Full text link
    The magnetic rare earth element gadolinium (Gd) was doped into thin films of amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C) using magnetron co-sputtering. The Gd acted as a magnetic as well as an electrical dopant, resulting in an enormous negative magnetoresistance below a temperature (T′T'). Hydrogen was introduced to control the amorphous carbon bonding structure. High-resolution electron microscopy, ion-beam analysis and Raman spectroscopy were used to characterize the influence of Gd doping on the \textit{a-}Gdx_xC1−x_{1-x}(:Hy_y) film morphology, composition, density and bonding. The films were largely amorphous and homogeneous up to xx=22.0 at.%. As the Gd doping increased, the sp2sp^{2}-bonded carbon atoms evolved from carbon chains to 6-member graphitic rings. Incorporation of H opened up the graphitic rings and stabilized a sp2sp^{2}-rich carbon-chain random network. The transport properties not only depended on Gd doping, but were also very sensitive to the sp2sp^{2} ordering. Magnetic properties, such as the spin-glass freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroidâ„¢ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures

    Constraining the age of the NGC 4565 HI Disk Warp: Determining the Origin of Gas Warps

    Get PDF
    We have mapped the distribution of young and old stars in the gaseous HI warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp, but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ~300 Myr ago relative to the surrounding regions, is (6.3 +2.5/-1.5) x 10^-5 M_sol/yr/kpc^2. This implies a ~60+/-20 Gyr depletion time of the HI warp, similar to the timescales calculated for the outer HI disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of HI warps, and the gas fueling of disk galaxies.Comment: 12 pages, 9 figures. Accepted for publication in Ap

    Stabilizing the surface morphology of Si1–x–yGexCy/Si heterostructures grown by molecular beam epitaxy through the use of a silicon-carbide source

    Get PDF
    Si1–x–yGexCy/Si superlattices were grown by solid-source molecular beam epitaxy using silicon carbide as a source of C. Samples consisting of alternating layers of nominally 25 nm Si1–x–yGexCy and 35 nm Si for 10 periods were characterized by high-resolution x-ray diffraction, transmission electron microscopy (TEM), and Rutherford backscattering spectrometry to determine strain, thickness, and composition. C resonance backscattering and secondary ion mass spectrometries were used to measure the total C concentration in the Si1–x–yGexCy layers, allowing for an accurate determination of the substitutional C fraction to be made as a function of growth rate for fixed Ge and substitutional C compositions. For C concentrations close to 1%, high-quality layers were obtained without the use of Sb-surfactant mediation. These samples were found to be structurally perfect to a level consistent with cross-sectional TEM (< 10^7 defects/cm^2) and showed considerably improved homogeneity as compared with similar structures grown using graphite as the source for C. For higher Ge and C concentrations, Sb-surfactant mediation was found to be required to stabilize the surface morphology. The maximum value of substitutional C concentration, above which excessive generation of stacking fault defects caused polycrystalline and/or amorphous growth, was found to be approximately 2.4% in samples containing between 25 and 30% Ge. The fraction of substitutional C was found to decrease from roughly 60% by a factor of 0.86 as the Si1–x–yGexCy growth rate increased from 0.1 to 1.0 nm/s
    • …
    corecore