77 research outputs found

    Microbial processes with the potential to mobilize As from a circumneutral-pH mixture of flotation and roaster tailings

    Get PDF
    The Northwest Tailings Containment Area at the inactive Giant Mine (Canada) contains a complex mixture of arsenic-containing substances, including flotation tailings (84.8 wt%; with 0.4 wt% residual S), roaster calcine wastes (14.4 wt% Fe oxides), and arsenic trioxide (0.8 wt%) derived from an electrostatic precipitator as well as As-containing water (21.3 ± 4.1 mg L−1 As) derived from the underground mine workings. In the vadose zone the tailings pore water has a pH of 7.6 and contains elevated metal(loid)s (2.37 ± 5.90 mg L−1 As); mineral oxidizers account for 2.5% of total 16S rRNA reads in solid samples. In the underlying saturated tailings, dissolved Fe and As concentrations increase with depth (up to 72 and 20 mg L−1, respectively), and the mean relative abundance of Fe(III)-reducers is 0.54% of total reads. The potential for As mobilization via both reductive and oxidative (bio)processes should be considered in Giant Mine remediation activities. The current remediation plan includes installation of an engineered cover that incorporates a geosynthetic barrier layer

    Control of mercury and methylmercury in contaminated sediments using biochars: A long-term microcosm study

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.apgeochem.2018.02.004 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The effectiveness of activated carbon and four types of biochar, switchgrass (300 °C and 600 °C), poultry manure (600 °C), and oak (∼700 °C) with respect to mercury (Hg) and methylmercury (MeHg) control was assessed in microcosm experiments carried out for 524 d. Early in the study (<30 d), minimal differences in concentrations of <0.45-μm filtered total Hg (THg) in control and 5% biochar-amended systems were observed. At later stages, THg concentrations in the amended systems decreased to 8–80% of concentrations in the sediment controls. Aqueous concentrations of MeHg were generally lower in the amended systems than in the controls, with an initial peak in MeHg concentration corresponding to the onset of iron and sulfate reduction (∼40 d) and a second peak to methanogenic conditions (∼400 d). Pyrosequencing analyses indicate the microbial communities initially associated with fermenters and later shifted to iron-reducing bacteria (FeRB), sulfate-reducing bacteria (SRB), and methanogens. These analyses also indicate the existence of 12 organisms associated with Hg methylation in all systems. Community shifts were correlated with changes in the concentrations of carbon sources (dissolved organic carbon (DOC) and organic acids) and electron acceptors (NO3−, Fe, and SO42−). Co-blending of biochars with Hg-contaminated sediment can be an alternative remediation method for controlling the release of Hg and MeHg, but the potential for Hg methylation under some conditions requires consideration.Natural Sciences and Engineering Research Council of CanadaCanada Research ChairsE. I. du Pont de Nemours and Compan

    Data on removal kinetics of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar

    Get PDF
    The data presented in this paper relate to the research paper “Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar” [1]. Four columns packed with different ratios of reactive media, including silica sand (SS), zero-valent iron (ZVI), and biochar (BC), were evaluated for simultaneous removal of 14 emerging contaminants from water. The target emerging contaminants included eight pharmaceuticals (carbamazepine, caffeine, sulfamethoxazole, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, ibuprofen, gemfibrozil, and naproxen), four artificial sweeteners (acesulfame-K, sucralose, saccharin, and cyclamate), and two perfluoroalkyl substances (perfluorooctanoic acid and perfluorooctane sulfonic acid). The samples for target contaminant analysis were collected from the influent, effluent, and profile (along the flow direction) ports of each column. The removal data (concentration vs. residence time) for each target contaminant were fitted to the first-order (exponential decay equation) or zero-order (linear equation) model using SigmaPlot. The removal rate, removal rate constant (kobs), mass normalized rate constant (kM), surface area normalized rate constant (kSA, specific reaction rate constant), and half-life (t0.5) of target contaminants in Columns ZVI, BC, and (ZVI + BC) were calculated and summarized in this dataset.Natural Sciences and Engineering Research Council of Canada

    Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030days: A synchrotron- based study

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jclepro.2019.01.006 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A previous long-term microcosm experiment showed mercury (Hg) in the aqueous phase of contaminated sediment was effectively stabilized through the addition of biochar. The present study focuses on the application of synchrotron-related methods to evaluate the distribution and speciation of Hg in the biochar particles reacted for 235, 387, and 1030 days. The study provided more information on Hg stabilization mechanisms in addition to the information obtained by the previous studies. Confocal micro-X-ray fluorescence imaging (CMXRFI) and micro-X-ray fluorescence (micro-XRF) maps show that mercury co-exists with S, Cu, Fe, Mn, and Zn on the surface and inside the particles of biochar. Extended X-ray absorption fine structure (EXAFS) modeling shows that Hg is in an oxide form on the surface of an iron (hydro)oxide particle from fresh sediment and in Hg-sulfide forms in biochar samples. S X-ray absorption near-edge structure (XANES) analyses show that sulfide is present within the biochar particles. After amendment with biochars, a fraction of the Hg originally present in unstable forms (dissolvable, HgO, colloidal, nano, etc.) in the sediment was likely stabilized as less soluble Hg-sulfide phases on the surface or within the biochar particle. These results suggest Hg accumulation by the biochar particles renders it less potential for transport and bioavailability.Natural Sciences and Engineering Research CouncilProgram of Geological ProcessesResources and Environment in the Yangtze Basin, Grant CUGCJ1702National Natural Science Foundation of China, Grant 4187747

    Effect of composting and amendment with biochar and woodchips on the fate and leachability of pharmaceuticals in biosolids destined for land application

    Get PDF
    Land application of biosolids can improve soil fertility and enhance crop production. However, the occurrence and persistence of pharmaceutical compounds in the biosolids may result in leaching of these contaminants to surface water and groundwater, causing environmental contamination. This study evaluated the effectiveness of two organic amendments [biochar (BC) and woodchips (WC)] for reducing the concentration and leachability (mobility) of four pharmaceuticals in biosolids derived from wastewater treatment plants in southern Ontario, Canada. The effect of 360-d composting on fate and leachabilities of target pharmaceuticals in biosolid mixtures was also investigated. Composting decreased total and leachable concentrations of pharmaceuticals in unamended and BC- and WC-amended biosolids to various degrees, from 10% up to 99% depending on the compound. Blending BC or WC into the biosolids greatly increased the removal rates of the target pharmaceuticals, while simultaneously decreasing their half-lives (t0.5), compared to unamended biosolids. The t0.5 of contaminants in this study followed the order: carbamazepine (304–3053 d) > gemfibrozil (42.3–92.4 d) > naproxen (15.3–104 d) > ibuprofen (12.5–19.0 d). Amendment with BC and(or) WC significantly reduced the leachability of carbamazepine, ibuprofen, and gemfibrozil to variable extents, but significantly enhanced the leachability of naproxen, compared to unamended biosolids (P < 0.05). Biochar and WC exhibited different (positive or negative) effects on the leachability of individual pharmaceuticals. Significantly lower concentrations of total and(or) leachable (mobile) pharmaceuticals were observed in amended biosolids than unamended biosolids (P < 0.05). Biochar and WC are effective amendments that can reduce the environmental impact of biosolid land applications with respect to pharmaceutical contamination.Natural Sciences and Engineering Research Council of Canada || Natural Resources Canada

    Microbiological and geochemical characterization of As-bearing tailings and underlying sediments

    Get PDF
    Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L ), SO , Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O is depleted to &lt; 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ S-SO in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

    Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.scitotenv.2018.10.213 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Hardwood biochar (pyrolyzed at 700 °C), a potential candidate for Hg removal, has been proposed for use as reactive capping mats along groundwater discharge zones or riverbanks to control release of Hg from contaminated riverbank sediments. Frequent flooding and drainage in fluvial settings can influence the effectiveness of remediation systems in contaminated riverbank sediments and floodplain soils. This study evaluated the effectiveness of Hg removal using hardwood biochar under hydrogeochemical conditions representative of those present within a reactive capping mat installed in a fluvial setting. Two sets of treatment columns, containing 50% v.v biochar and quartz sand, were subjected to 100 weekly wetting/drying cycles that included dry air, water-saturated air, and drainage using leachate derived from two source columns as input solutions: 1. Passing simulated acid rain water through floodplain soil, 2. Passing river water through riverbank sediment. In both treatment columns, >80% of the Hg was retained on the biochar without promoting Hg methylation and the release of other unintended dissolved constituents (including N, P, DOC). Results from solidphase extraction analyses suggest that Hg accumulated near the air/biochar-sand interface (0–2 cm) in the treatment columns at low loadings but was present at greater depths at higher loadings. Results of micro X-ray fluorescence (μ-XRF) mapping and micro X-ray absorption near edge structure (μ-XANES) for the biochar collected at depths 0–2 cm in treatment columns suggest retention of Hg-bearing particles derived from riverbank sediment and floodplain soil within the pore structure of the biochar. Sulfur K-edge XANES analysis of the unused biochar and the biochar after treatment suggest formation of Hg complexes on the biochar surface. These results indicate that hardwood biochar is potentially an effective media for application in reactive mats for controlling Hg discharging from contaminated riverbank sediments.Natural Sciences and Engineering Research Council of CanadaE. I. du Pont de Nemours and Company CanadaOntario Research Fun

    A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock.

    Get PDF
    Abstract Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water

    Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jhazmat.2017.12.051 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The application of biochar to treat mercury (Hg) in the environment is being proposed on an increasing basis due to its widespread availability and cost effectiveness. However, the efficiency of Hg removal by biochars is variable due to differences in source material composition. In this study, a series of batch tests were conducted to evaluate the effectiveness of sulfurized biochars (calcium polysulfide and a dimercapto-related compound, respectively) for Hg removal; Hg-loaded biochars were then characterized using synchrotron-based techniques. Concentrations of Hg decreased by >99.5% in solutions containing the sulfurized biochars. Sulfur X-ray absorption near-edge structure (XANES) analyses indicate a polysulfur-like structure in polysulfide-sulfurized biochar and a thiol-like structure (shifted compared to dimercapto) in the dimercapto-sulfurized biochar. Micro-X-ray fluorescence (μ-XRF) mapping and confocal X-ray micro-fluorescence imaging (CXMFI) analyses indicate Hg is distributed primarily on the edges of sulfurized biochar and throughout unmodified biochar particles. Hg extended X-ray absorption fine structure (EXAFS) analyses show Hg in enriched areas is bound to chlorine (Cl) in the unmodified biochar and to S in sulfurized biochars. These results indicate that Hg removal efficiency is enhanced after sulfurization through the formation of strong bonds (Hg-S) with S-functional groups in the sulfurized biochars.Natural Sciences and Engineering Research Council of Canada (NSERC) E. I. du Pont de Nemours and Company Canada Research Chair progra
    corecore