3,651 research outputs found

    Mir-434-5p mediates skin whitening and lightening

    Get PDF
    Utilization of gene silencing effectors, such as microRNA (miRNA) and small hairpin RNA (shRNA), provides a powerful new strategy for human skin care in vivo, particularly for hyperpigmentation treatment and aging prevention. In this study, tyrosinase (Tyr), the rate-limiting enzyme of melanin (black pigment) biosynthesis, was served as a target for treatment of hyperpigmentation in mouse and human skins. There are over 54 native microRNA capable of silencing human tyrosinase for skin whitening and lightening. To this, we have designed a mir-434-5p homologue and used it to successfully demonstrate the feasibility of miRNA-mediated skin whitening and lightening in vitro and in vivo. Under the same experimental condition in the trials, Pol-II-directed intronic mir-434-5p expression did not cause any detectable sign of cytotoxicity, whereas siRNAs targeting the same sequence often induced certain nonspecific mRNA degradation as previously reported. Because the intronic miRNA-mediated gene silencing pathway is tightly regulated by multiple intracellular surveillance systems, including Pol-II transcription, RNA splicing, exosomal digestion and nonsense-mediated RNA decay (NMD), the current findings underscore the fact that intronic miRNA agents, such as manually re-designed mir-434-5p homologues, are effective, target-specific and safe to be used for skin whitening without any detectable cytotoxic effect. Given that the human skins also express a variety of other native miRNAs, we may re-design these miRNAs based on their individual functions for skin care, which may provide significant insights into areas of opportunity for new cosmetic and/or therapeutical applications

    Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase

    Get PDF
    The conventional DNA polymerase machinery is unable to fully replicate the ends of linear chromosomes. To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication. This unique, non-DNA templated mode of telomere replication requires a regulatory mechanism to ensure that telomerase acts at telomeres whose TG tracts are too short, but not at those with long tracts, thus maintaining the protective TG repeat cap at an appropriate average length. The prevailing notion in the field is that telomere length regulation is brought about through a negative feedback mechanism that counts TG repeat-bound protein complexes to generate a signal that regulates telomerase action. This review summarizes experiments leading up to this model and then focuses on more recent experiments, primarily from yeast, that begin to suggest how this counting mechanism might work. The emerging picture is that of a complex interplay between the conventional DNA replication machinery, DNA damage response factors, and a specialized set of proteins that help to recruit and regulate the telomerase enzyme

    Collaborative research and development (R&D) for climate technology transfer and uptake in developing countries: Towards a needs driven approach

    Get PDF
    While international cooperation to facilitate the transfer and uptake of climate technologies in developing countries is an ongoing part of climate policy conversations, international collaborative R&D has received comparatively little attention. Collaborative R&D, however, could be a potentially important contributor to facilitating the transfer and uptake of climate technologies in developing countries. But the complexities of international collaborative R&D options and their distributional consequences have been given little attention to date. This paper develops a systematic approach to informing future empirical research and policy analysis on this topic. Building on insights from relevant literature and analysis of empirical data based on a sample of existing international climate technology R&D initiatives, three contributions are made. First, the paper analyses the coverage of existing collaborative R&D efforts in relation to climate technologies, highlighting some important concerns, such as a lack of coverage of lower-income countries or adaptation technologies. Second, it provides a starting point for further systematic research and policy thinking via the development of a taxonomic approach for analysing collaborative designs. Finally, it matches characteristics of R&D collaborations against developing countries’ climate technology needs to provide policymakers with guidance on how to Configure R&D collaborations to meet these needs

    Understanding the Relationship between Solar Coronal Abundances and F10.7 cm Radio Emission

    Get PDF
    Sun-as-a-star coronal plasma composition, derived from full-Sun spectra, and the F10.7 radio flux (2.8 GHz) have been shown to be highly correlated (r = 0.88) during solar cycle 24. However, this correlation becomes nonlinear during increased solar magnetic activity. Here we use cotemporal, high spatial resolution, multiwavelength images of the Sun to investigate the underlying causes of the nonlinearity between coronal composition (FIP bias) and F10.7 solar index correlation. Using the Karl G. Jansky Very Large Array, Hinode/EIS (EUV Imaging Spectrometer), and the Solar Dynamics Observatory, we observed a small active region, AR 12759, throughout the solar atmosphere from the photosphere to the corona. The results of this study show that the magnetic field strength (flux density) in active regions plays an important role in the variability of coronal abundances, and it is likely the main contributing factor to this nonlinearity during increased solar activity. Coronal abundances above cool sunspots are lower than in dispersed magnetic plage regions. Strong magnetic concentrations are associated with stronger F10.7 cm gyroresonance emission. Considering that as the solar cycle moves from minimum to maximum, the sizes of sunspots and their field strength increase with the gyroresonance component, the distinctly different tendencies of radio emission and coronal abundances in the vicinity of sunspots is the likely cause of saturation of Sun-as-a-star coronal abundances during solar maximum, while the F10.7 index remains well correlated with the sunspot number and other magnetic field proxies

    KS(conf ): A Light-Weight Test if a ConvNet Operates Outside of Its Specifications

    Full text link
    Computer vision systems for automatic image categorization have become accurate and reliable enough that they can run continuously for days or even years as components of real-world commercial applications. A major open problem in this context, however, is quality control. Good classification performance can only be expected if systems run under the specific conditions, in particular data distributions, that they were trained for. Surprisingly, none of the currently used deep network architectures has a built-in functionality that could detect if a network operates on data from a distribution that it was not trained for and potentially trigger a warning to the human users. In this work, we describe KS(conf), a procedure for detecting such outside of the specifications operation. Building on statistical insights, its main step is the applications of a classical Kolmogorov-Smirnov test to the distribution of predicted confidence values. We show by extensive experiments using ImageNet, AwA2 and DAVIS data on a variety of ConvNets architectures that KS(conf) reliably detects out-of-specs situations. It furthermore has a number of properties that make it an excellent candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with all networks, including pretrained ones, and requires no a priori knowledge about how the data distribution could change

    Sex differences in epigenetic age in Mediterranean high longevity regions

    Get PDF
    Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (β = 3.55; p = 1.22 × 10-12), Horvath (β = 1.07; p = 0.00378) and the Pace of Aging (β = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (β = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells

    Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission.

    Get PDF
    Bats are natural reservoirs of several important emerging viruses. Cross-species transmission appears to be quite common among bats, which may contribute to their unique reservoir potential. Therefore, understanding the importance of bats as reservoirs requires examining them in a community context rather than concentrating on individual species. Here, we use a network approach to identify ecological and biological correlates of cross-species virus transmission in bats and rodents, another important host group. We show that given our current knowledge the bat viral sharing network is more connected than the rodent network, suggesting viruses may pass more easily between bat species. We identify host traits associated with important reservoir species: gregarious bats are more likely to share more viruses and bats which migrate regionally are important for spreading viruses through the network. We identify multiple communities of viral sharing within bats and rodents and highlight potential species traits that can help guide studies of novel pathogen emergence.This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directorate (US Department of Homeland Security) and the Fogarty International Center (National Institutes of Health). D.T.S.H. acknowledges funding from a David H. Smith post-doctoral fellowship. A.A.C. is partially funded by a Royal Society Wolfson Research Merit award, and J.L.N.W. is supported by the Alborada Trust. Thanks to Paul Cryan and Michael O'Donnell of the USGS Fort Collins Science Center for help with species distribution analyses.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/ele.1249

    Support for viral persistence in bats from age-specific serology and models of maternal immunity.

    Get PDF
    Spatiotemporally-localised prediction of virus emergence from wildlife requires focused studies on the ecology and immunology of reservoir hosts in their native habitat. Reliable predictions from mathematical models remain difficult in most systems due to a dearth of appropriate empirical data. Our goal was to study the circulation and immune dynamics of zoonotic viruses in bat populations and investigate the effects of maternally-derived and acquired immunity on viral persistence. Using rare age-specific serological data from wild-caught Eidolon helvum fruit bats as a case study, we estimated viral transmission parameters for a stochastic infection model. We estimated mean durations of around 6 months for maternally-derived immunity to Lagos bat virus and African henipavirus, whereas acquired immunity was long-lasting (Lagos bat virus: mean 12 years, henipavirus: mean 4 years). In the presence of a seasonal birth pulse, the effect of maternally-derived immunity on virus persistence within modelled bat populations was highly dependent on transmission characteristics. To explain previous reports of viral persistence within small natural and captive E. helvum populations, we hypothesise that some bats must experience prolonged infectious periods or within-host latency. By further elucidating plausible mechanisms of virus persistence in bat populations, we contribute to guidance of future field studies

    Direct entropy determination and application to artificial spin ice

    Full text link
    From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular and colloidal materials, proteins and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice). Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.Comment: 10 page
    corecore