10,660 research outputs found

    Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics.

    Get PDF
    Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information

    A Pan1/End3/Sla1 complex links Arp2/3-mediated actin assembly to sites of clathrin-mediated endocytosis.

    Get PDF
    More than 60 highly conserved proteins appear sequentially at sites of clathrin-mediated endocytosis in yeast and mammals. The yeast Eps15-related proteins Pan1 and End3 and the CIN85-related protein Sla1 are known to interact with each other in vitro, and they all appear after endocytic-site initiation but before endocytic actin assembly, which facilitates membrane invagination/scission. Here we used live-cell imaging in parallel with genetics and biochemistry to explore comprehensively the dynamic interactions and functions of Pan1, End3, and Sla1. Our results indicate that Pan1 and End3 associate in a stable manner and appear at endocytic sites before Sla1. The End3 C-terminus is necessary and sufficient for its cortical localization via interaction with Pan1, whereas the End3 N-terminus plays a crucial role in Sla1 recruitment. We systematically examined the dynamic behaviors of endocytic proteins in cells in which Pan1 and End3 were simultaneously eliminated, using the auxin-inducible degron system. The results lead us to propose that endocytic-site initiation and actin assembly are separable processes linked by a Pan1/End3/Sla1 complex. Finally, our study provides mechanistic insights into how Pan1 and End3 function with Sla1 to coordinate cargo capture with actin assembly

    Endophthalmitis, Prevention and Treatment

    Get PDF

    The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer.

    Get PDF
    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer

    Saliva Ontology: An ontology-based framework for a Salivaomics Knowledge Base

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO).</p> <p>Results</p> <p>We define the Saliva Ontology (SALO; <url>http://www.skb.ucla.edu/SALO/</url>) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics domain and to saliva-related diagnostics following the principles of the OBO (Open Biomedical Ontologies) Foundry.</p> <p>Conclusions</p> <p>The Saliva Ontology is an ongoing exploratory initiative. The ontology will be used to facilitate salivaomics data retrieval and integration across multiple fields of research together with data analysis and data mining. The ontology will be tested through its ability to serve the annotation ('tagging') of a representative corpus of salivaomics research literature that is to be incorporated into the SKB.</p

    Colloidal transport through optical tweezer arrays

    Full text link
    Viscously damped particles driven past an evenly spaced array of potential energy wells or barriers may become kinetically locked in to the array, or else may escape from the array. The transition between locked-in and free-running states has been predicted to depend sensitively on the ratio between the particles' size and the separation between wells. This prediction is confirmed by measurements on monodisperse colloidal spheres driven through arrays of holographic optical traps.Comment: 4 pages, 4 figure

    Minimizing Unsatisfaction in Colourful Neighbourhoods

    Get PDF
    Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.Comment: 28 pages, 12 figures, substantially revised with additional explanatio

    Non-coding Rnas In Saliva: Emerging Biomarkers For Molecular Diagnostics

    Get PDF
    Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information
    corecore