65 research outputs found

    CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition.

    Get PDF
    Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) is a genetically heterogeneous subtype of B-cell ALL characterized by chromosomal rearrangements and mutations that result in aberrant cytokine receptor and kinase signaling. In particular, chromosomal rearrangements resulting in the overexpression of cytokine receptor-like factor 2 (CRLF2) occur in 50% of Ph-like ALL cases. CRLF2 overexpression is associated with particularly poor clinical outcomes, though the molecular basis for this is currently unknown. Glucocorticoids (GCs) are integral to the treatment of ALL and GC resistance at diagnosis is an important negative prognostic factor. Given the importance of GCs in ALL therapy and the poor outcomes for patients with CRLF2 overexpression, we hypothesized that the aberrant signal transduction associated with CRLF2 overexpression might mediate intrinsic GC insensitivity. To test this hypothesis, we exposed Ph-like ALL cells from patient-derived xenografts to GCs and found that CRLF2 rearranged (CRLF2R) leukemias uniformly demonstrated reduced GC sensitivity in vitro. Furthermore, targeted inhibition of signal transduction with the MEK inhibitor trametinib and the Akt inhibitor MK2206, but not the JAK inhibitor ruxolitinib, was sufficient to augment GC sensitivity. These data suggest that suboptimal GC responses may in part underlie the poor clinical outcomes for patients with CRLF2 overexpression and provide rationale for combination therapy involving GCs and signal transduction inhibitors as a means of enhancing GC efficacy

    Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy

    Get PDF
    Cytokine release syndrome (CRS) is a systemic inflammatory response associated with chimeric antigen receptor T-cell (CAR-T) therapies. In severe cases, CRS can be associated with coagulopathy and hypofibrinogenemia. We present our global multicenter experience with CRS-associated coagulopathy after tisagenlecleucel therapy in 137 patients with relapsed or refractory B-cell acute lymphoblastic leukemia from the ELIANA and ENSIGN trials. These trials included clinical guidelines for fibrinogen replacement during CRS-associated coagulopathy. Hypofibrinogenemia requiring replacement was observed only in patients with severe CRS. A higher percentage of patients who required replacement were <10 years old, compared with those who did not require replacement. Twenty-three patients received replacement for hypofibrinogenemia (<1.5 g/L); 9 of them developed marked hypofibrinogenemia (<1 g/L). Very low fibrinogen levels (<1 g/L) were documented in patients before maximal CRS (n = 1), during maximal CRS (n = 7), and at CRS improvement (n = 1). Although hypofibrinogenemia was the most clinically significant coagulopathy, some patients also developed prolonged prothrombin time and activated partial thromboplastin time and increased international normalized ratio, further increasing the risk of bleeding. Hypofibrinogenemia was effectively managed using fibrinogen concentrate or cryoprecipitate replacement; severe (grade 4) bleeding events were rare (n = 2). CRS-associated coagulopathy with hypofibrinogenemia is manageable according to empiric guidelines of fibrinogen replacement for CAR-T trials. Fibrinogen concentrate should be used when cryoprecipitate is not reliably available. Monitoring fibrinogen levels in patients with moderate or severe CRS is essential for avoiding potentially fatal bleeding events

    PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia

    Get PDF
    The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondria) apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, FED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response

    Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells

    Full text link
    Recent advances have highlighted extensive phenotypic and functional similarities between normal stem cells and cancer stem cells. This raises the question of whether disease therapies can be developed that eliminate cancer stem cells without eliminating normal stem cells. Here we address this issue by conditionally deleting the Pten tumour suppressor gene in adult haematopoietic cells. This led to myeloproliferative disease within days and transplantable leukaemias within weeks. Pten deletion also promoted haematopoietic stem cell (HSC) proliferation. However, this led to HSC depletion via a cell-autonomous mechanism, preventing these cells from stably reconstituting irradiated mice. In contrast to leukaemia-initiating cells, HSCs were therefore unable to maintain themselves without Pten. These effects were mostly mediated by mTOR as they were inhibited by rapamycin. Rapamycin not only depleted leukaemia-initiating cells but also restored normal HSC function. Mechanistic differences between normal stem cells and cancer stem cells can thus be targeted to deplete cancer stem cells without damaging normal stem cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62514/1/nature04703.pd

    Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

    Get PDF
    Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation

    Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies

    Get PDF
    A complex interplay of intracellular signaling networks orchestrates normal cell growth and survival, including translation, transcription, proliferation, and cell cycle progression. Dysregulation of such signals occurs commonly in many malignancies, thereby giving the cancer cell a survival advantage, but also providing possible targets for therapeutic intervention. Activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway contributes to the proliferative advantage of malignant cells and may confer resistance to chemotherapy in various hematologic malignancies. The initial mTOR inhibitor, sirolimus (also known as rapamycin), was first discovered in 1975 in the soil of Easter Island. Sirolimus was originally developed as an anti-fungal agent given its macrolide properties, but was approved by the Food and Drug Administration (FDA) in 1999 as an immunosuppressive agent for renal transplantation patients once its T cell suppression characteristics were recognized. Shortly thereafter, recognition of sirolimus’s ability to inhibit cellular proliferation and cell cycle progression brought sirolimus to the forefront as a possible inhibitor of mTOR. In the subsequent decade, the functional roles of the mTOR protein have been more fully elucidated, and this protein is now known to be a key regulator in a highly complex signaling pathway that controls cell growth, proliferation, metabolism, and apoptosis. This article discusses the dysregulation of PI3K/mTOR signaling in hematologic malignancies, including acute and chronic leukemias, lymphomas, and lymphoproliferative disorders. The current repertoire of PI3K/mTOR pathway inhibitors in development and clinical trials to date are described with emphasis upon pediatric hematologic malignancies (Figure 1). Investigation of small molecule inhibitors of this complex signaling network is an active area of oncology drug development

    Hypofibrinogenemia Is Associated With Poor Outcome and Secondary Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome in Pediatric Severe Sepsis*

    No full text
    ObjectivesSome children with sepsis exhibit a sustained hyperinflammatory response that can trigger secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome. Although hypofibrinogenemia is a shared feature of sepsis and hemophagocytic lymphohistiocytosis, there are no data about fibrinogen as a biomarker to identify children with sepsis/secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome overlap. We hypothesized that hypofibrinogenemia is associated with poor outcomes and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome and has utility as a screening biomarker for this sepsis phenotype.DesignA retrospective cohort study of patients less than or equal to 21 years treated for severe sepsis from January 2012 to December 2014.SettingEmergency department and PICU at a single academic children's hospital.PatientsConsecutive patients with greater than or equal to one episode of hypofibrinogenemia (serum fibrinogen &lt; 150 mg/dL) within 7 days of sepsis were compared with a random sample of patients without hypofibrinogenemia using an a priori sample size target of 190. Thirty-eight patients with hypofibrinogenemia were compared with 154 without hypofibrinogenemia.InterventionsNone.Measurements and main resultsThe primary outcome was "complicated course" (composite of 28-d mortality or ≥ two organ failures at 7 d). Secondary outcomes were 28-day mortality and fulfillment of diagnostic criteria for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome. We used Wilcoxon rank-sum, Fisher exact test, and multivariable logistic regression to compare patients with versus without hypofibrinogenemia. Patients with hypofibrinogenemia were more likely to have a complicated course (73.7% vs 29.2%; p &lt; 0.001), 28-day mortality (26.3% vs 7.1%, p = 0.002), and meet diagnostic criteria for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (21.1% vs 1.3%; p &lt; 0.001). After controlling for confounders, hypofibrinogenemia remained associated with complicated course (adjusted odds ratio, 8.8; 95% CI, 3.5-22.4), mortality (adjusted odds ratio, 6.0; 95% CI, 2.0-18.1), and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (adjusted odds ratio, 27.6; 95% CI, 4.4-173).ConclusionsHypofibrinogenemia was independently associated with poor outcome and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome in pediatric sepsis. Measurement of fibrinogen may provide a pragmatic biomarker to identify children with possible sepsis/secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome overlap for whom further diagnostic testing and consideration of adjunctive immunomodulatory therapies should be considered
    • …
    corecore