65 research outputs found

    Design Interfaces with VR

    Get PDF
    Virtual Reality (VR) is maturing as a technology. Now that mainstream head-mounted displays (HMDs) are consumer-affordable, the space of application development has begun in earnest. Some of this development transitions existing applications (e.g. computer games) to work with a 3D tracked interface while others explore completely novel and innovative uses of VR. The idea of using VR in architectural practice has a long history. As a tool with the potential to allow 3D visualisation at 1:1scale, the use-case for architectural visualisation has seemed natural and obvious since the early days of the technology. However, the realisation of this idea was not initially straightforward. In 2000 UCL built a CAVE-like VR projection theatre – this is a 3m x 3m room where three of the four walls and the floor are stereo displays, viewed through tracked stereo glasses allowing perspective-correct stereo views. This was driven by a state-of-the-art SGI computer, many times more powerful than any standard PC (and about 20 times the size). However, despite this vast graphics processing power, most architectural models, could not easily be adapted to this new technology. These models had been designed for accurate renderings of detailed geometry. Twenty minutes of processing with standard computer graphics applications on a desktop PC could produce a beautiful rendering of a view into this model, but VR demands real-time frame rates (ideally at least 60 frames per second) and the models were simply too large and detailed for this. These tensions between designs for single viewpoint renderings and designs for real-time rendering are now better understood, and advances in both graphics hardware and software have improved this situation. However recent trends in consumer VR towards standalone headsets mean that simulations are now driven by the same graphics processors that drive the mobile devices in our pockets. Aside from these technical hurdles, the cost has been the main contributing factor to the relatively slow uptake of VR as a tool for exploring design, but now that we have affordable devices available, what are the factors that still hinder progress

    The Use of Virtual Reality in the Study of People's Responses to Violent Incidents

    Get PDF
    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents

    The impact of enhanced projector display on the responses of people to a violent scenario in immersive virtual reality

    Get PDF
    This paper describes the impact of display resolution and luminance on the responses of participants in a behavioral study that used a projection-based Immersive Virtual Reality System. The scenario was a virtual bar where participants witnessed a violent attack of one person on another due to an argument about support for a soccer club. The major response variable was the number of interventions made by participants. The study was between-groups with 10 participants in two groups pre-upgrade and post-upgrade, both in the same 4-screen Cave-like system. However, the post-upgrade group experienced the scenario with projectors that had a significantly higher level of resolution and luminance than those experienced by the pre-upgrade group. The results show that, other things being equal, the number of both verbal and physical interventions was greater amongst those in the post-upgrade group compared to the pre-upgrade group

    Corrigendum: Action Sounds Modulate Arm Reaching Movements

    Get PDF
    A corrigendum on: Action Sounds Modulate Arm Reaching Movements by Tajadura-Jiménez, A., Marquardt, T., Swapp, D., Kitagawa, N., and Bianchi-Berthouze, N. (2016). Front. Psychol. 7:1391. doi: 10.3389/fpsyg.2016.0139

    Some Lessons Learned Running Virtual Reality Experiments Out of the Laboratory

    Get PDF
    In the past twelve months, our team has had to move rapidly from conducting most of our user experiments in a laboratory setting, to running experiments in the wild away from the laboratory and without direct synchronous oversight from an experimenter. This has challenged us to think about what types of experiment we can run, and to improve our tools and methods to allow us to reliably capture the necessary data. It has also offered us an opportunity to engage with a more diverse population than we would normally engage with in the laboratory. In this position paper we elaborate on the challenges and opportunities, and give some lessons learned from our own experience

    The effect of virtual reality on visual vertigo symptoms in patients with peripheral vestibular dysfunction: a pilot study

    Get PDF
    Individuals with vestibular dysfunction may experience visual vertigo (VV), in which symptoms are provoked or exacerbated by excessive or disorientating visual stimuli (e.g. supermarkets). VV can significantly improve when customized vestibular rehabilitation exercises are combined with exposure to optokinetic stimuli. Virtual reality (VR), which immerses patients in realistic, visually challenging environments, has also been suggested as an adjunct to VR to improve VV symptoms. This pilot study compared the responses of sixteen patients with unilateral peripheral vestibular disorder randomly allocated to a VR regime incorporating exposure to a static (Group S) or dynamic (Group D) VR environment. Participants practiced vestibular exercises, twice weekly for four weeks, inside a static (Group S) or dynamic (Group D) virtual crowded square environment, presented in an immersive projection theatre (IPT), and received a vestibular exercise program to practice on days not attending clinic. A third Group D1 completed both the static and dynamic VR training. Treatment response was assessed with the Dynamic Gait Index and questionnaires concerning symptom triggers and psychological state. At final assessment, significant betweengroup differences were noted between Groups D (p = 0.001) and D1 (p = 0.03) compared to Group S for VV symptoms with the former two showing a significant 59.2% and 25.8% improvement respectively compared to 1.6% for the latter. Depression scores improved only for Group S (p = 0.01) while a trend towards significance was noted for Group D regarding anxiety scores (p = 0.07). Conclusion: Exposure to dynamic VR environments should be considered as a useful adjunct to vestibular rehabilitation programs for patients with peripheral vestibular disorders and VV symptoms

    Ubiq-exp: A toolkit to build and run remote and distributed mixed reality experiments

    Get PDF
    Developing mixed-reality (MR) experiments is a challenge as there is a wide variety of functionality to support. This challenge is exacerbated if the MR experiment is multi-user or if the experiment needs to be run out of the lab. We present Ubiq-Exp - a set of tools that provide a variety of functionality to facilitate distributed and remote MR experiments. We motivate our design and tools from recent practice in the field and a desire to build experiments that are easier to reproduce. Key features are the ability to support supervised and unsupervised experiments, and a variety of tools for the experimenter to facilitate operation and documentation of the experimental sessions. We illustrate the potential of the tools through three small-scale pilot experiments. Our tools and pilot experiments are released under a permissive open-source license to enable developers to appropriate and develop them further for their own needs

    Position-Based Control of Under-Constrained Haptics: A System for the Dexmo Glove

    Get PDF
    The Dexmo glove is a haptic exoskeleton that provides kinesthetic feedback in virtual reality. Unlike many other gloves based on string–pulleys, the Dexmo uses a free-hinged link-bar to transfer forces from a crank to the fingertips. It also uses an admittance-based controller parameterized by position, as opposed to an impedance-based controller parameterized by force. When setting the controller’s target position, developers must use its native angular coordinate system. The Dexmo has a number of uninstrumented degrees of freedom. Mature forward models can reliably predict the hand pose, even with these unknowns. When it comes to computing angular controller parameters from a target pose in Cartesian space however, things become more difficult. Complex models that provide attractive visuals from a small number of sensors can be non-trivial or even impossible to invert. In this letter, we suggest side-stepping this issue. We sample the forward model in order to build a lookup table. This is embedded in three-dimensional space as a curve, on which traditional queries against world geometry can be performed. Controller parameters are stored as attributes of the sample points. To compute the driver parameters for a target position, the application constrains the position to the geometry, and interpolates them. This technique is generalizable, stable, simple, and fast. We validate our approach by implementing it in Unity 2017.3 and integrating it with a Dexmo glove

    Extending the Open Source Social Virtual Reality Ecosystem to the Browser in Ubiq

    Get PDF
    Social VR (SVR) systems are VR systems with a common subset of features facilitating unstructured social interaction. In the real world, social situations have many purposes, each with a different set of requirements, and roles its participants take - creator, moderator, performer, visitor, etc. Yet, common SVR systems typically offer only a single client to users. Even if there are versions for different platforms, there is a one-size-fits-all approach to the user experience. Consequently users need to employ workarounds or build their own functionality to support specific roles, where this is possible at all. We argue that platforms need to develop more open frameworks that support different processes and user interactions. One way to do this is through using appropriate web standards and an open messaging system in order to allow distributed clients that can leverage the strongest features of heterogeneous computing platforms. Supporting asymmetrical capabilities greatly increases the scope of supported virtual social interactions and potential use cases of SVR. We take a qualitative experimental approach to exploring cross platform support in this way, from a designers perspective. We use the open-source SDK Ubiq, and create a library that allows building Ubiq Peers using web standards and thus clients that can operate solely in a web browser or certain Javascript environments. We validate our approach by demonstrating six proof of concept demonstrators that would be difficult or impossible to achieve in most other SVR systems, and report on what we encountered for the benefit of other SVR designers

    How do people with persecutory delusions evaluate threat in a controlled social environment? A qualitative study using virtual reality

    Get PDF
    Environmental factors have been associated with psychosis but there is little qualitative research looking at how the ongoing interaction between individual and environment maintains psychotic symptoms. Aims: The current study investigates how people with persecutory delusions interpret events in a virtual neutral social environment using qualitative methodology. Method: 20 participants with persecutory delusions and 20 controls entered a virtual underground train containing neutral characters. Under these circumstances, people with persecutory delusions reported similar levels of paranoia as non-clinical participants. The transcripts of a post-virtual reality interview of the first 10 participants in each group were analysed. Results: Thematic analyses of interviews focusing on the decision making process associated with attributing intentions of computer-generated characters revealed 11 themes grouped in 3 main categories (evidence in favour of paranoid appraisals, evidence against paranoid appraisals, other behaviour). Conclusions: People with current persecutory delusions are able to use a range of similar strategies to healthy volunteers when making judgements about potential threat in a neutral environment that does not elicit anxiety, but they are less likely than controls to engage in active hypothesis-testing and instead favour experiencing 'affect' as evidence of persecutory intentio
    corecore