261 research outputs found

    An Urban Banking Facility

    Get PDF

    Large, long range tensile forces drive convergence during

    Get PDF
    Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 mN during gastrulation and over 4 mN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 mN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. © Shook et al

    A Conversation with Tomas Avila Laurel

    Get PDF
    In February 2011 Juan Tomás Ávila Laurel (b. 1966) declared a hunger strike in order to bring attention to the political situation in Equatorial Guinea, where the longstanding authoritarian regime works in tandem with the compliance of foreign powers. Concerned for the security of the author, national and international observers recommended that he leave the country. Today, Ávila Laurel lives in Spain, where he has become, in his own words, a “migrant due to political causes.” In Spain, Ávila Laurel continues his writing, alongside a pacific fight for democracy. Aside from his ethical commitment to justice and solidarity with the people of his country and all marginalized peoples, Ávila Laurel has created a literary aesthetic that is informed by this multilingual, multicultural environment. Thus, his literary style is marked by images that synthesize his society, reflect on world history, and connect Equatorial Guinea to other nations, across time and geography

    Control of a benchmark structure using GA-optimized fuzzy logic control

    Get PDF
    Mitigation of displacement and acceleration responses of a three story benchmark structure excited by seismic motions is pursued in this study. Multiple 20-kN magnetorheological (MR) dampers are installed in the three-story benchmark structure and managed by a global fuzzy logic controller to provide smart damping forces to the benchmark structure. Two configurations of MR damper locations are considered to display multiple-input, single-output and multiple-input, multiple-output control capabilities. Characterization tests of each MR damper are performed in a laboratory to enable the formulation of fuzzy inference models. Prediction of MR damper forces by the fuzzy models shows sufficient agreement with experimental results. A controlled-elitist multi-objective genetic algorithm is utilized to optimize a set of fuzzy logic controllers with concurrent consideration to four structural response metrics. The genetic algorithm is able to identify optimal passive cases for MR damper operation, and then further improve their performance by intelligently modulating the command voltage for concurrent reductions of displacement and acceleration responses. An optimal controller is identified and validated through numerical simulation and fullscale experimentation. Numerical and experimental results show that performance of the controller algorithm is superior to optimal passive cases in 43% of investigated studies. Furthermore, the state-space model of the benchmark structure that is used in numerical simulations has been improved by a modified version of the same genetic algorithm used in development of fuzzy logic controllers. Experimental validation shows that the state-space model optimized by the genetic algorithm provides accurate prediction of response of the benchmark structure to base excitation

    Progenitor Cell Therapy for Sensorineural Hearing Loss in Infants

    Get PDF
    Typical language development requires typical hearing. With sensorineural hearing loss (SNHL), the damaged hair cells of the organ of Corti within the cochlea interfere with typical hearing and, as a result, cause impaired language development. Untreated SNHL causes significant neurocognitive differences in affected children. SNHL is a permanent sensory disorder affecting more than 270 million people worldwide. Congenital SNHL is found in 4 of 1000 newborns. Approximately half of congenital SNHL is hereditary and is the result of genetic mutations causing improper development of cochlear hair cells. Non-genetic congenital SNHL is thought to be the result of an injury to the cochlea typically from premature birth, infection, or exposure to ototoxic medications or noise. In mammals, the cochlea is postmitotic at birth, and no spontaneous repair occurs thereafter. Existing treatments for SNHL (hearing aids and cochlear implants) function by augmenting the damaged organ of Corti. No reparative treatments currently exist. In preclinical and clinical studies, progenitor cell therapy (cord blood and mesenchymal stem cells) has shown promise in reversing the underlying pathology of SNHL, the loss of cochlear sensory hair cells. Progenitor cell therapy may also allow functional reorganization of the auditory pathways including primary auditory cortex (Heschl’s gyrus). We will present a summary of the effect of hearing loss on auditory development, existing preclinical and clinical data on progenitor cell therapy, and its potential role in the (re)habilitation of non-genetic SNHL

    Patterns of mtDNA Diversity in Northwestern North America

    Get PDF
    The mitochondrial DNA (mtDNA) haplogroups of 54 full-blooded modern and 64 ancient Native Americans from northwestern North America were determined. The control regions of 10 modern and 30 ancient individuals were sequenced and compared. Within the Northwest, the frequency distribution for haplogroup A is geographically structured, with haplogroup A decreasing with distance from the Pacific Coast. The haplogroup A distribution suggests that a prehistoric population intrusion from the subarctic and coastal region occurred on the Columbia Plateau in prehistoric times. Overall, the mtDNA pattern in the Northwest suggests significant amounts of gene flow among Northwest Coast, Columbia Plateau, and Great Basin populations

    The bending of cell sheets - from folding to rolling

    Get PDF
    The bending of cell sheets plays a major role in multicellular embryonic morphogenesis. Recent advances are leading to a deeper understanding of how the biophysical properties and the force-producing behaviors of cells are regulated, and how these forces are integrated across cell sheets during bending. We review work that shows that the dynamic balance of apical versus basolateral cortical tension controls specific aspects of invagination of epithelial sheets, and recent evidence that tissue expansion by growth contributes to neural retinal invagination in a stem cell-derived, self-organizing system. Of special interest is the detailed analysis of the type B inversion in Volvox reported in BMC Biology by Höhn and Hallmann, as this is a system that promises to be particularly instructive in understanding morphogenesis of any monolayered spheroid system

    Methodological Issues of Spatial Agent-Based Models

    Get PDF
    Agent based modeling (ABM) is a standard tool that is useful across many disciplines. Despite widespread and mounting interest in ABM, even broader adoption has been hindered by a set of methodological challenges that run from issues around basic tools to the need for a more complete conceptual foundation for the approach. After several decades of progress, ABMs remain difficult to develop and use for many students, scholars, and policy makers. This difficulty holds especially true for models designed to represent spatial patterns and processes across a broad range of human, natural, and human-environment systems. In this paper, we describe the methodological challenges facing further development and use of spatial ABM (SABM) and suggest some potential solutions from multiple disciplines. We first define SABM to narrow our object of inquiry, and then explore how spatiality is a source of both advantages and challenges. We examine how time interacts with space in models and delve into issues of model development in general and modeling frameworks and tools specifically. We draw on lessons and insights from fields with a history of ABM contributions, including economics, ecology, geography, ecology, anthropology, and spatial science with the goal of identifying promising ways forward for this powerful means of modeling
    corecore