6,008 research outputs found

    Reduced Coulomb interaction in organic solar cells by the introduction of inorganic high-k nanostructured materials

    Full text link
    In this article a concept is introduced, which allows for reduced Coulomb interaction in organic solar cells and as such for enhanced power conversion efficiencies. The concept is based on the introduction of electrically insulating, nanostructured high-k materials into the organic matrix, which do not contribute to the charge transport, however, effectively enhance the permittivity of the organic active layer and thereby reduce the Coulomb interaction. Using an analytical model it is demonstrated that even at a distance of 20 nm to the organic / inorganic interface of the nanostructure, the Coulomb interaction can be reduced by more than 15 %. The concept is implemented using P3HT:PCBM solar cells with integrated high-k nanoparticles (strontium titanate). It could be demonstrated that in comparison to a reference cell without integrated nanoparticles, the power conversion efficiencies could be improved by ~20 %.Comment: 11 pages, 7 figure

    Skepticism, Dogmatism and the Future of Liberalism

    Get PDF

    \u3ci\u3eMessage to the King\u3c/i\u3e

    Get PDF

    Redshifts and Luminosities for 112 Gamma Ray Bursts

    Get PDF
    Two different luminosity indicators have recently been proposed for Gamma Ray Bursts that use gamma-ray observations alone. They relate the burst luminosity (L) with the time lag between peaks in hard and soft energies, and the spikiness or variability of the burst's light curve (V). These relations are currently justified and calibrated with only 6 or 7 bursts with known red shifts. We have examined BATSE data for the lag and V for 112 bursts. (1) A strong correlation between the lag and V exists, and it is exactly as predicted from the two proposed relations. This is proof that both luminosity indicators are reliable. (2) GRB830801 is the all-time brightest burst, yet with a small V and a large lag, and hence is likely the closest known event being perhaps as close as 3.2 Mpc. (3) We have combined the luminosities as derived from both indicators as a means to improve the statistical and systematic accuracy when compared with the accuracy from either method alone. The result is a list of 112 bursts with good luminosities and hence red shifts. (4) The burst averaged hardness ratio rises strongly with the luminosity of the burst. (5) The burst luminosity function is a broken power law, with the break at L = 2x10^{52} erg/s. The luminosity function has power law indices of -2.8+-0.2 above the break and -1.7+-0.1 below the break. (6) The number density of GRBs varies with red shift roughly as (1+z)^(2.5+-0.3) between 0.2<z<5. Excitingly, this result also provides a measure of the star formation rate out to z~5 with no effects from reddening, and the rate is rising uniformly for red shifts above 2.Comment: 13 pages, 4 figures, submitted to ApJLet

    Pursuing Parameters for Critical Density Dark Matter Models

    Get PDF
    We present an extensive comparison of models of structure formation with observations, based on linear and quasi-linear theory. We assume a critical matter density, and study both cold dark matter models and cold plus hot dark matter models. We explore a wide range of parameters, by varying the fraction of hot dark matter ΩΜ\Omega_{\nu}, the Hubble parameter hh and the spectral index of density perturbations nn, and allowing for the possibility of gravitational waves from inflation influencing large-angle microwave background anisotropies. New calculations are made of the transfer functions describing the linear power spectrum, with special emphasis on improving the accuracy on short scales where there are strong constraints. For assessing early object formation, the transfer functions are explicitly evaluated at the appropriate redshift. The observations considered are the four-year {\it COBE} observations of microwave background anisotropies, peculiar velocity flows, the galaxy correlation function, and the abundances of galaxy clusters, quasars and damped Lyman alpha systems. Each observation is interpreted in terms of the power spectrum filtered by a top-hat window function. We find that there remains a viable region of parameter space for critical-density models when all the dark matter is cold, though hh must be less than 0.5 before any fit is found and nn significantly below unity is preferred. Once a hot dark matter component is invoked, a wide parameter space is acceptable, including n≃1n\simeq 1. The allowed region is characterized by \Omega_\nu \la 0.35 and 0.60 \la n \la 1.25, at 95 per cent confidence on at least one piece of data. There is no useful lower bound on hh, and for curious combinations of the other parameters it is possible to fit the data with hh as high as 0.65.Comment: 19 pages LaTeX file (uses mn.sty). Figures *not* included due to length. We strongly recommend obtaining the full paper, either by WWW at http://star-www.maps.susx.ac.uk/papers/lsstru_papers.html (UK) or http://www.bartol.udel.edu/~bob/papers (US), or by e-mailing ARL. Final version, to appear MNRAS. Main revision is update to four-year COBE data. Miscellaneous other changes and reference updates. No significant changes to principal conclusion

    Twist and Turn: Weak Lensing Image Distortions to Second Order

    Get PDF
    We account for all the image distortions relevant to weak gravitational lensing to second order. Besides the familiar shear, convergence, rotation and flexions, we find a new image distortion with two distinct descriptions, the twist and the turn. Like rotation, this distortion is not activated gravitationally to first order, but will be activated by systematic effects. We examine the rotational properties of twist and turn, and their effect on images in real and shapelet space. We construct estimators for the new distortion, taking into account the centroid shift which it generates. We then use these estimators to make first constraints on twist using the STAGES HST survey; we find that the mean twist estimator is consistent with zero. We measure correlation functions for our twist estimator on the survey, again finding no evidence of systematic effects.Comment: 9 pages, 9 figures. Accepted by MNRAS; expands discussion of distortions and estimator
    • 

    corecore