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ABSTRACT

We account for all the image distortions relevant to weakvigmional lensing to second

order. Besides the familiar shear, convergence, rotatishfi@xions, we find a new image
distortion with two distinct descriptions, the twist anatturn. Like rotation, this distortion

is not activated gravitationally to first order, but will beti@ated by systematic effects. We
examine the rotational properties of twist and turn, andr tefect on images in real and

shapelet space. We construct estimators for the new dastptaking into account the centroid
shift which it generates. We then use these estimators te firak constraints on twist using

the STAGES HST survey; we find that the mean twist estimatooissistent with zero. We

measure correlation functions for our twist estimator angtrvey, again finding no evidence
of systematic effects.

Key words. cosmology: observations — gravitational lensing.

1 INTRODUCTION in real and shapelet space, and give details of how it can lze me
sured with fairly straightforward estimators. We then nugagwist

Weak gravitational flexion is a relatively new addition toeth for the first time using the Space Telescope A901/902 Galay E

panoply of gravitational lensing effects, but has consibkr lution Survey (STAGEMO?),aIarge mosaic

p?tenttltal fpr tr;ee;su.nng substructure in_the_density dhgtror;_ooz with the Hubble Space Telescope (HST). We show that the tsvist
of matter in the Universe (see e consistent with zero for STAGES on all scales, both in terihs o

'go'd?erﬁ & BacolriEZQ_(b? hnei Er o \’{(%ZQOE'—MI al its mean values and its correlation functions, incremégngalding
’ L : neider L ): confidence in the management of systematics for this survey.

Flexion is proportional to third angular derivatives of fhre- The paper is organised as follows. In Seci@n 2, we recount

jected gravitational potential along the line of sight. Agls, it . . . . . .
is at the next order of differentiation compared to shear ot the theory of image distortions in weak lensing at the maudiet
P first order. We note that there is already a non-gravitatiomade

vergence, which are the more studied weak lensing meassees ( at this order; image rotation. We write the distortions ints of

Imann hneider 2001, for an extensive review). &inc . . . I
. N Pauli matrices, which will give us the necessary clues far o
as we shall see, there are two independent combinationsrdf th . . )
treat higher order distortions later.

derivatives, there are two different flexion effects: théekion, . .
L . . ) . . In Sectior 8, we extend the account to second order. We find

which is & vector distortion leading to objects being skevasdi that there are combinations of Pauli matrices orthogondhdse
the 3-flexion, which is a spin three distortion changing wiac ob- o . . 9
jects into trefoils describing the conventional flexion degrees of freedomseta-

: ' . . thogonal combinations give twist and turn distortions. \iéethere-

Up until now, these have been the only known image distor- . o .
. . S - fore able to write down for the first time the complete weakgma
tions at this order. However, in this paper we will show thegre distortion to second order. and show how twist and turn desae
is a further neglected image distortion at the flexion levéth .
to one another observationally.

two alternative descriptions which we call twist and turn fflea- . . . . i
sons which will become obvious. This distortion is not aatid by Se_ctlod]l desc_rlbes_ the_behawour of twist/turn. The =
properties of the distortion is worked out, and we find thaisis

gravity under the most straightforward approximations;ibwill . . . )

be activated by systematic effects. The latter are of greatern a vgctor quantlty_. We show the impact of twist and turn on sim-

to weak lensing, so finding a further signature of systeraasipo- ple Images, we find that they_ do not affect the shape .Of IC|.rt;uIa
symmetric images, but only images with non-zero ellipgicitVe

tentially very valuable to upcoming lensing surveys. s . .
In this paper we show how twist or turn arises, and account for _ShOW explicitly the nat_ure of twist gnd turnin shapel_et Shamwov-
why it has not been noticed before. We show how it affects gsag mg_that they have no impact on circularly symmetrlc_ s_ouraasl
derive how they move power between shapelet coefficients.
In Sectior b we go about finding practical estimators for mea-
suring twist and turn. We derive simple estimators in shetpel
* E-mail: david.bacon@port.ac.uk space. Noting that like flexion, twist and turn affect thetoeids
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of objects, we correct the estimators by constructing Hiighore

complicated expressions which take this shift into accodiatv-

ever, we will show that our estimators are not perfect; theyla

respond to flexion if it is present, and should therefore éated as
estimators of any second-order systematics, or of (reaysies-

atic) twist on scales where flexion is negligible.

In Sectiorl 6 we use these estimators to constrain twist ebser
vationally for the first time, using the STAGES HST survey. filie
that our twist estimator has a larger variance than flexigimes
tors, and that its mean value is consistent with zero in thEGHS
data. We measure correlation functions for twist estingtagain
finding that they are consistent with zero systematic in SE&SG
We summarise our results and conclude in Se¢fion 7.

2 IMAGE DISTORTIONSTO FIRST ORDER

We begin by discussing image distortions in weak lensingre fi
order (for more details, see Bartelmann & Schnédider 200&)cv
describe the effect of lensing as a mapping between thecsurfa
brightnessfs of a galaxy at a positiofi3:, 82) in the source plane,
and the surface brightnegs at a position(6+, 62) in the image
plane:

J1(0:) = fs(Bi) = fs(Aiz0;) 1)

where we have set the origin 6f and3; to the centre of light in
the respective planesl is the Jacobian matrix which maps image
positions to source positions,

0B
90,

For lensing with a single lens plane, and assuming the Born ap
proximation, this is given by

Aij = 0ij — 0:951)

Aij = 2

®)

wherey is the lensing potential, i.e. the gravitational potersizit-
ably projected into 2D. We can therefore wrileas

A:<16H 1EH)+<:£ _f) )
with the convergence given by

w= 3 (@ + )y 5)
and the sheay; given by

=@ =R, 2= ©

There is an alternative notation that is useful to us, intoed by
[Bacon et al.[(2006). We define the complex derivatives 9, +

102; in cylindrical coordinates this is given by
o (O i 0
RN A
9=c <ae Ty aqs)
with radial coordinat® and azimuthal coordinate We also define
v = 1 + iy2, and then

@)

L. 1
K= 588 P, v = 2881/1. (8)
Besides simplifying notation, this format elucidates thims of the
quantities; whed is applied, the € term in equatior({7) raises the
spin by one. Similarly, the application 8f lowers the spin by one.
So sincey is a scalar, so ig, while v is spin 2.

However, our study ofd is not complete. We have specified
three quantities i, i.e. s, v1, andyz2. But A is a four element ob-
ject, so there is a further degree of freedom which we haveedis
We quickly realise that this isreotation p, i.e.

(o 22 )+ (5 )+ B

for small rotation anglep. Whereas: and~y can be written as sec-
ond derivatives of the lensing potential, this is not pdssior p. It
is not activated by gravity in our approximation (due to theei-
changability of the second derivatives of the gravitatiquaential,
0;0;¢ = 0;0;1), but may be present in a real lensing survey as a
systematic (see e.g. the rotation caused by the telescop&raimed
byO). This rotation has been described qushy;
see e.g. Hirata & Seljak (2003).

We will find it convenient to writed as a sum of Pauli matri-
ces, as these provide an orthogonal basis for studyingeiude-
grees of freedom at the next order of weak lensing approximat

The Pauli matrices are given hy (Arfken & Welber 2005)

(20 et )

-7
—v2

-2
71

0 1
1 0
1

0 —z 0
w(19) es(h)
SO we can writed as
A= (1—-k)I —y103 — Y201 + pio2. (11)

We will need one further concept: in a weak lensing contéis i
usual to assume that the shear and convergence are smaband ¢
stant across an object. We can then write the surface baghtn
mapping as

J1(8:) = fs(6:505+(Ai;—0i5)0;) = fs(0:)+(Aij—0i;)0;0: fs(0:)(12)

We will now modify this to show how flexion and the new distor-
tions enter.

3 IMAGE DISTORTIONSTO SECOND ORDER

The further step taken by flexion studies is to note that itityea
shear will vary across an object. If we kedpas a constant across
the object, we need a further term in a Taylor expansion irsthie

face brightness map, as givenlby Goldberg & Bacon (2005),

1
J1(0:) = fs <Aij9j + §Dijk9j9k) .

(13)

This introduces theéD tensor; if we suppose that its components
are purely due to a variation of across the image, we can write
D;jr, = OxAsj. Then by differentiating equatiof (fL1) we find

Dijy = —01kI — Ohvy103 — O1y201 + O1pioa,

Dijg = —Oorl — (92’)’10’3 — 82’)’20’1 + (92pi0’2. (14)

We can rewrite much of this in terms of flexion. We define the 1-
flexion asF’ = F + iF>, and the 3-flexiorG = G + iG>, where

F= %aaa% G = %8861/}. (15)
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F is manifestly spin 1 and~ is spin 3. Comparing with equation
(8) and disentangling the individual components we find

iy = 01k =017 + 022,

Fy = 0k = 0172 — Oay1,

G1 = 0171 — Oy,

Gy = O1y2+ 021 (16)

Reorganising in terms of derivatives of shear, we can write

o = %(Fl +Gh),
02y = %(Fl - Gh),
oy = %(F2 + Ga),
Doy = %(—F2 +Ga). (17)

Hence we can write th® tensor in terms of the Pauli matrices as
Dij1 = -1 — %(Fl + Gh)os — %(FQ + G2)o1 + %Cl’i(fz
Dija = ~Fal + 3 (Fs — Ga)os — 5(Fy — Ga)ou + 5Csio (18)
where we have defined thern,
Ci =20;p (19)

which in the complex notation we can write@s= 20p, with C' =

C1 + iC5. This is a new distortion mode, which simply describes

how the amount of image rotation in the Jacobian varies athes
object. Like the rotation, it is not expected to be activdtgdravity
at our level of approximation.

Separating into individual distortion components, we have
[-2Dij1,—2Dij2] = Fi[2] + 03,01] + Fao1,2] — 03]
+Gilos, —o1] + Galo1, 03]

+Cl[—iag, 0] + Co [0, —102]. (20)

F, G andC provide six parameters fab. However,D has eight
components, so it might initially be thought that there aghede-
grees of freedom in lensing distortions at this order. Wimathe
remaining two parameters represent? We note that whérgae-
multiplies oz, F' andG premultiply mixtures off, o1 andos. We
can therefore seek a further mixture of these latter questitVe
can find this by writing the six known objects as 1-D lists of el
ements, treating these as vectors and seeking two furtloéorge
which are orthogonal to these six and each other. Gaussiai el
nation leads to the components

[-2Dij1,—2Djjo) = ... + Th[—1 + 01 + 03, —I + 01 — 03]
+To[—1I — 01 + 03,1 + 01 + 03]. (21)

where we have introduced thist, 7', which might appear to be
another non-gravitational distortion mode.

However, we note from equatiop (13) that a lensed object has

surface brightness at positigh found using a second order term
(Di12 + Di21)01602/2; ie D;12 and D;21 do not occur indepen-
dently of one another for any observational consequends .sym-
metrisation means that there are six, rather than eigh¢reésonal
guantities at second order. We can cause a particular idton-
age by either applying a twist or a turn. We will find the redati
between the two below.

(© 0000 RAS, MNRASD00, 000-000
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We now have a complete list of distortions to second order.

Explicitly, the full image distortion to this order is degmd by the

A matrix,
S5 o)

a= (1)
(& %)

-1 =2
-2 M
and theD tensor,

3Fy F

+ 0 —C1 + 0 T — Ty
C1 0 T — Ty =217 — 215
B - Fy F Go -G
—2Di2 = ( Fy 3P, ) * < -G1 —G2 )
i 0 —Cs n 2T + 2T Ti+ Ty
Co 0 T+ 1> 0

(23)

From this list of the elements dd we can easily find how to con-

vert between a twist mode and the turn which causes the same ob

servational consequences. If we have descriptiaf a distortion
with zero turn and non-zero twigty*, 7'), this is equivalent to
descriptionb with zero twist, and turn given by

(&)-(4 =)0

Equally if we start with description, we can find descriptiom
using

N _1( 1 -1 ct
Ts ) 2\ -1 -1 ct )

The surface brightness mapping can be approximated todecon
der as

1
J1(8:) = fs <5ij9j + (Aij — 65)0; + §Dijk9j9k>

(24)

(25)

Figureld gives an overview of the lensing quantities, thelition-
ship to the gravitational potential and their transform@atproper-
ties. C' is found by taking the derivative gf, but p and therefore
C cannot be derived from the potential by taking derivatividsus

pandC or T constitute additional degrees of freedom in the lens

mapping beyond gravitational effects.

4 BEHAVIOUR OF TWIST AND TURN
4.1 Rotational Properties

We can now examine how the new constituentsiotransform
under rotationsR, by rotating a source-plane coordinatgin the
absence ofd:

ﬂz/ = Rlelmnemen = RilDlmnRﬁjijepRZkqugq
Rt Dipn Ry Ry 0565, (27)

where primes denote rotated quantitites. But aldo'ifs the rotated
tensor thers; = D;;,,050;,, so

Diji = RuDipnRE; R (28)
Since we can write the rotation by angleas

. cos¢  sing
R_< —sin¢g cos ¢ > (29)
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g_ potential deflection Jacobian flexion
(%]
tensor 3 - / G
tensor 2 - / \
vector 1 - F
/ \ /T c
scalar 0 - /

powers of differential operator

Figure 1. Chart summarising the derivation of the lensing quantligsuc-
cessive application of the differential operators, andr ttespective trans-
formation properties.

we can write the transformation fd» (and its constituent objects)
as

[Di;1, Dija] = [Rit Dimi R cos ¢ + RigDima Roy,; sin 6,

—RiuDymi R sin ¢ + Ry Dima R cos ¢] (30)

Ifwe setF' = G = T = C> = 0 so thatD only contains non-zero
turn C1, we find that this”, object transforms into the equivalent
C- object after ar/2 rotation, and returns to its initial form after
a 2 rotation; soC; andC- are the components of a vector. This
is to be expected, as turn is the gradient of the scalar ootéitld,
and so is naturally a vector.

Since a twist can be written in terms of a turn, we should ex-
pect that twist will also be a vector. Indeed, if we gét= G =
C =T> = 0, the resultindl’, object transforms into the equivalent
T- object after ar/2 rotation, and returns to its initial form after a
27 rotation; sdl; andT; are also the components of a vector.

4.2 Real Space Behaviour

Now that we have established the rotational properties efdik-
tortions, we would like to visualise what effect they havereal
images. We can use the first line of the mapping equafioh (26) t
gether with theD tensor of equatiorf {23) to observe the effect of
the second order image distortions on a Gaussian circulaltipf
tical image.

Figure[2 shows the effect of 1-flexion and 3-flexion. Here we
have operated on objects with Gaussian surface brightness

_ (x—z)®  (y—ye)?
I(x)=Aexp |— 502 207 (31)
whereo, = o, = 0.5” for the circular source, and, =
0.11”, 0, = 0.5” for the elliptical source. This gives an elliptic-

ity e= (07 —02)/(0s + 02) =0.9.

Notice that 1-flexion and 3-flexion affect the shape of both
circular and elliptical objects in the figure. We can compéis to
figure[3, which shows the effect of turn on circular and eiliak
objects. Notice that turn has no discernible effect on theutarly
symmetric source; we will show later that it indeed has zéiece
on such a source. On horizontally or vertically ellipticdljects,

a pureC; or Cs gives an arc which by eye appears similar to the
impact of flexion, but it is truly a different mode of curvaguwith
a distinct estimator which we will find below.

Figure 2. Effect of 1-flexion and 3-flexion on circular and elliptical &
0.9) Gaussian sources Withy,,jor = 0.5”. Top panel: unlensed objects;
middle panel:F; = 0.2 arcsec !; bottom panelG; = 0.7 arcsec!.

Figure[4 shows the equivalent effect of twist. It might appea
from this figure that twist has a different effect to turn, butom-
bination of C; andC> can achieve the same effect’Bsor Ts; it
is just that a pure”; distorts the object in a different direction to
a pureTh, for instance. Again, twist appears not to affect circular
objects, and we will show this to be the case below. Its impaot
is to turn horizontally or vertically elliptical objects tm aerofoil
shapes. Note the way in whi¢h components engage with the el-
lipticities to make aerofoils oriented in different diriets. Positive
T, or negativeT, operate to twist horizontal objects into upward
curving objects, with the front of the aerofoil pointing ipfmosite
senses; negativé; or positiveT> operate on horizontal objects to
make downward curving objects. On the other hand, posifive
and positivel, bend vertical objects to the left, while negatiVe
and negativé, bend them to the right.

4.3 Shapelet Space Behaviour

We can gain insight into the behaviour of these distortiordeso
by examining their action in shapelet space. We use the po-

lar shapelets of Bernstein & Jaivis (2002), Refregier (3088d
Massey & Refregief (2005). As is described in the latter pgpe

lar shapelets can be described by their number of radialnodad
azimuthal nodesn, providing a basis set, m) for 2D localised
objects. The shapelets require a length sg¢ate be set, which is
the standard deviation of the zeroth shapelet, a 2-D cirdGiéaus-
sian. Then an imagg’) is the sum of the shapelets with appropriate
coefficients:

f> = anm|n7 m>

(32

(© 0000 RAS, MNRASD00, 000—-000
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Figure 3. Effect of turn on horizontally and vertically elliptical fzts. Top
panel:C; = 1.3 arcsec ! on a circular Gaussian with = 0.5”. Second
panel:C; = 1.3 arcsec! on elliptical Gaussians Withajor = 0.57,
e1 = 0.9 ande; = —0.9. Third panel:C; = —1.3 arcsec! on the

same elliptical Gaussians. Fourth par@}: = 1.3 arcsec '; Bottom panel:
Cy = —1.3arcsec?!.

and a lensed image is the result of applying various opesébdhe
source:

Ify = (1+I€K+pR+7i§i+Fiﬁi+Giéi+TiTi+Ciéi)|f>(33)

where the terms are for convergence, rotation, shear, bifleR-
flexion, twist and turn respectively. We wish to discover wihase

(© 0000 RAS, MNRASD00, 000-000
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Figure 4. Effect of twist on horizontally and vertically ellipticalbgects.
Top panel:7y = 1.3 arcsec! on a circular Gaussian with = 0.5”.
Second panell; = 1.3 arcsec ! on elliptical Gaussiangmajor = 0.5”,
e1 = 0.9 ande; = —0.9. Third panel:7; = —1.3 arcsec’! on the

same elliptical Gaussians. Fourth parfé):= 1.3 arcsec !; Bottom panel:
Ty = —1.3 arcsect.

operators are in terms of the ladder operators which actebahis:

alln,m) = \/%Mln+l,m+1>

arln,m) = n—;m|n—l,m—l>

At n—m-+2

ajln,m) = fm—&—l,m—l)

aln,m) = ,/”;m|n—1,m+1>. (34)
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Figureb5. Effect of shear and flexion on a circular Gausian in shappkstes.
Shapelet profiles are displayed for the real part of polapsless in the top
part of the figure, and for the imaginary part in the bottont pathe figure.
Shear (red) takes power from the Gaussian shap@léy and places it in
the spin-2 modeR2, +-2). 1-flexion (yellow) moves power to spin-1 modes,
while 3-flexion (blue) moves power to the spin-3 modgst3).

The ladder operators obey commutation relations

o]
o]

a1, 4] = [al,ai] - [a},ar] - [a{,

We can write position and derivative operators in terms ekéh
ladder operators:

= 1

= 1

a:] = 0. (35)

A 1 . .

z = E[ai-l—af—kaz-i-ar]

g = %[di_d;+dl_&ri|

4 LI ot st s aa
2 - faasa)

d Tt At s s
8_y = %[—ai—i—a;—l—al—ar] (36)

Using these with equatio_(R6), we can find forms for first and
second order lensing operators. Massey & Refregier (2068) a
I.[_(Z_Q_(bY) have shown the forms for shear and flexion
these are summarised in figlirk 5, which shows their effects on
circular Gaussian in shapelet space. Note that shear movesr p
from the|0, 0) mode to the spin-2 modé$8, +2), while 1-flexion

Figure 6. Effect of twist in shapelet space. Circular Gaussians ateafio
fected, so here we show the power moved from|th&) mode; note that
twist pushes power into spin 1 and spin 3 modes.

but extensive non-commutative algebra we find

T = —g [(1 —ala + aiar> ar(1— 1)
— (1-ala, +afa) a(1+1)

—af (a}al - aiar) (1+1)

~a] (afau - ala,) (1-19)]

Ty = —g [(1 —ala + aiar> ar(1+19)

+(1-ala, +afar) a1 - i)
+al (afa —ala,)

—af (afa —ala,) (1+19)] (37)
where the factor ofs takes into account the fact that the operators
in equation[(36) work in units g8. One can consider what happens
to a circular(m = 0) source operated on by ef; the third and

fourth terms in the equation above fbr vanish, ag a a; — &I&T)
countsm; the first term initially acts withu,- to move the state to a
spin-1 state; then the termin brackétls— ala; + dl&T) operates
to give zero. The second term similarly gives zero, resgitirtwist
having no effect on circularly symmetric objects.

The effect of these operators is shown in fidure 6. Since they
have no impact for circular objects, we show the effect orj2h2)
mode. Note that power is moved to neighbouring spin 1 and spin

moves power to spin-1 modes, and 3-flexion moves power to the 3 modes, with a rotation of1 + i) or (1 — 7) which gives the

spin-3 modes3, +3).
We can carry out similar calculations for twist and turnngsi
equation[(2b) together with equatidn [36). For twist, aftartine

characteristic twisted form of the image.
We carry out similar calculations for the equivalent turn de
scription, again using operators given by equationd (36tiogr

(© 0000 RAS, MNRASD00, 000—000



Figure 7. Effect of turn in shapelet space. As for twist, circular Gaass
are not affected, so we again show the power moved fronf2thzy mode.
TheCy component (purple) pushes power into spin 1 and spin 3 mates o
the opposite side of the diagram, whil& (orange) does the same on the
near side of the diagram.

with the mapping equatiof (26). We find

Ci = % - (1+afa —ala,) a + (1+alar - afa) a
— dj (ajal —a ar) + a, (arar — a;al)]
Co = —g [ (1+afa - ala,) o — (1+alar - afa) a

+ dj (ajal —a ar) +a) (aTar — alal)] (38)

Here again we find that the impact on= 0 states is zero, using an
identical argument to above. The effect of these operasslawn
in figure[I. Again we show the effect on th 2) mode; as for
twist, power is moved to neighbouring spin 1 and spin 3 modes,
but there are a different range of activated modesfprand Cs,
due to the different factors af

Now that we can describe twist/turn in shapelet space, we are
in a position to construct practical estimators for measthese
quantities.

5 CONSTRAINING TWIST AND TURN

5.1 SimpleEstimators

We can use the ladder operator form for twist to find a simplie es
mator for the new distortions. We consider the power thasliies
in the f11 component,

ro_ _ é —in/4 .
fii=/fu-ge (Th +iT2) f2 (39)

(© 0000 RAS, MNRASD00, 000—-000
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where f1; is the component after twist. Since the mean untwisted
f11 is expected to be zero, we have the estimator

. 2 ixjaf11
Test Test __“ im/4 J11 40
1 t+ls ﬂe oz (40)
In a similar fashion, the turnefi, coefficient is given by
fii=fuu+ 2\/—(01 —iC2) f22 (41)

so since the undistorted megn is expected to be zero, we obtain
the estimator

C2V2i fu
B fa

Note the close relationship between the estimators fort tansl
turn, and the fact that they can indeed be written as supémpos

of each other.

However, it should be noted that these will only be pure es-

timators for twist/turn if 1-flexion is absent (or neglig#)l This

is because 1-flexion also moves power into the mode (see

11(2007)) in such a fashion that our estimatgr et

twist) is truly

Cest Cest _

(42)

F*e”r/4

1,7r Fez‘rr/4
Zgm/al _ (3foo—3f10)—

fa2 2f22

The estimator is still of value to us despite this complm:a,tlas we
wish to use it to see if there is a twist-like systematic in sunvey;
we now see that, at this shapelet order, systematic flexiomgea-
erate a twist-like effect. This simple estimator is therefa test of
combined second-order systematics, or of (real or systentaist

on scales where flexion is negligible.

Nevertheless, it should be kept in mind that a pure estimatio
of twist will require a more extensive joint chi-squared fitwist
and flexion to several further orders of shapelets, in ordéulty
remove the degeneracy.

(\/_f22—3\/_f42)(43)

5.2 Correction for Centroid Shift

In addition, these simple estimators need correcting ferfttt
that twist/turn moves the centroid of the obj

) show that the centroid is moved by theensor according
to

Ay

o (3 1 1
(61) <2D111 + 2D212 —+ 2D221)

1
—(0102) (D112 + D121 + D222) — <9§>5D122

_ 1
Abs —(0%)513211 — (0162) (D221 4+ D212 + D111)

—(03) <§D222 + 1D121 + 1D112) (44)

2 2 2
where we have written a form which assumes less symmetry than
Goldberg & Bacon; this is necessary for our generaliBegtnsor.
Putting the values of th® tensor, equatiod (23), into this equation
we find
2

el
45
whereR? is the size quadrupole ands the unweighted ellipticity

as given i @07). Note again that for circ(das
0) objects, twist and turn have no effect.

AO1+iAOy = — [6F +5F e + Ge* +iC e + (i — 1)Te](45)
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[Massey et d1.[(2007) showed that the effect of the centroid
shift is to alter observable flexion estimatdrs+ i F» by substract-
ing aterm(AAD, + AG* D;), and the same applies here. The shift
operatorsD are given by

D, = % (ai — al) D, = % (alT — ar) (46)
Hence we find that equatiop (39) becomes
fii = fu-— geim/élem
R2 .
- 8[3 T (2 —1)(e1 + te2)(foo — f20)
+ \/5(2 +1)(e1 — iez)fzz] 47)

By dividing both sides byf22, we can therefore propose the cor-
gim/a 1 R?(e1 + iea)(foo —

rected estimator
2 B f0)\\
ﬁ f22 (1 < 2\/§ﬁ2f22 >> (48)

If we label the term in brackets &3, we similarly find for the turns

Test _

2V2i fu
BB faz
So our corrected estimators differ from our naive estinwatmly
by a factor of B. Again, twist can be written as a superposition
of turns, and vice versa. As in the previous section, thegores
of flexion would mean that these are not pure estimators aftiwi
the estimators should again be interpreted as showing c@ubi
second-order systematics, or (real or systematic) twissaaies
where flexion is negligible.

Cest _

(49)

6 FIRST MEASUREMENTSWITH TWIST/TURN
ESTIMATORS

We are now in a position to measure these twist/turn estirmato

110 7 I s B R B B

200F .

100} .

OB . v v v v

-4 -2 0 2 4 6
T (arcsec™)

Figure 8. Histogram of twist estimator values in one component in the
STAGES survey, for objects with F606 magnityde23.5, |T| < 6.0
arcsec! andj > 1 pixel.

—0.016+0.036 arcsec ', T> = —0.009 4 0.037 arcsec'. These
are consistent with zero, as we might hope for a systemataemo
At present the constraint is fairly weak, as gravitationatithn sig-
nals are at the level of 0.001 to 0.01 arcskchowever, in up-
coming lensing surveys the much larger area will lead totttmis
constraints at thé0~—* level, which will provide important checks
on systematics.

We can further explore whether the twist/turn estimatorcis a
tivated as a systematic in the STAGES survey by measuringiits
relation functions. As with shear correlation functiortse twists
should be rotated before they are correlated; howevergevehieéar
has to be rotated by factors df&é where¢ is the position angle of

real data. We use the STAGES mosaic observed with the Hubble the line joining a pair of objects, twist has to be rotated dgtdrs

Space Telescope (Gray eflal. 2007; Heymans|et al| 2008)isThis

0.25 square degree field observed with the Advanced Camera fo

Surveys in the F606W band, covering 80 ACS tiles in 80 orbits.
Drizzling is used to obtain an effective pixel size(o3”.

We use the same galaxy catalogue as Heymans ét al.| (2008)

deconvolving and decomposing all objects into shapelemgube

methods developed iin Refregier (2003): Refr B
Massey & Refregier (2005). The analysis will be descrlbemlh

in Bacon et al (2009); we obtain a shapelet catalogue for0®86,0
galaxies, together with measures/and R? for all objects. The
shapelets are normalised so thigf = 1.

We measure the twist/turn estimators for objects with F606
magnitude< 23.5 using equationd (48) td (#9); we find that for
this sample B = —1.59 4+ 0.01. Since the twist and turn measure-
ments are equivalent, here we choose to present resultsris tdf
twist. The histogram of twist estimators is shown in figlretBs
includes3o cuts for outliers withT'| > 6.0 arcsec !, and we only
consider objects witl# >1 pixel to avoid oversampllng. The first
thing to note is that our twist estimator is more noisy thaeash
and flexion estimators, having a standard deviation in omepoe
nent of 2.0 arcsec’; much of this noise is due to intrinsic shape
variance of the objects. The turn estimator as defined hagerla
standard deviation of 2.9 arcsec

We find mean values over the STAGES surveyTof =

of €? on account of its vector nature:

T =T cos ¢ + Th sin ¢
T5°" = —T1 sin ¢ + T cos ¢ (50)
We can then construct correlation functions
CH(0) = (T{*(6)Ti°(6; + 0))
C(0) = (T3°(6)T5° (6 + 6))
Cha(0) = (T{*"(0)T3°(6; + 0)) (51)

We have measured these correlation functions for twistnestirs

in STAGES, and display the results in figlire 9. Here error bars
are estimated by?//Npairs Whereo is the standard deviation
of twist and Ny.irs IS the number of galaxy pairs in a bin. We find
that the correlation functions are almost all consisterthvzero
signal, with reduced(? = 0.87,0.53,0.39 for CT,, CL, CL, re-
spectively.

7 CONCLUSION

In this paper, we have written down for the first time the fulak
image distortion relevant to weak lensing, to second ortleis

(© 0000 RAS, MNRASD00, 000—-000
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Figure9. STAGES twist estimator correlation function. Solid i@ 7 )
correlation function. Dashed liné7>7%) correlation function. Dotted line:
(T1T») correlation function.

involved the discovery of a new image distortion, the twigtjch
can be written in an alternative form as the turn.

We reviewed weak lensing distortions to first order, receuch
ing the lens mapping in terms of Pauli matrices. We noted xhe e
istence of a non-gravitational mode, the rotation. This aqirece-
dent which we also see at second order.

We then extended the formalism to second order; at this point

it became clear that the gradient of the rotation gives a neden
which we call the turn. A further orthogonal modelihwas found

by seeking a combination of Pauli matrices orthogonal tkraivn
modes; this new mode was called the twist. We showed that twis
and turn can be written in terms of each other regarding thiir
servational consequences, and were then able to write dwnflt
image distortion mapping to second order.

We explored the properties of twist/turn, finding that it is a
vector quantity. Its visual effect was shown, as was its ichp@
shapelet space. With the ladder operator formalism we sthdfnet
twist/turn has no effect on circularly symmetric objectat bnly
objects with non-zero ellipticity. We saw how twist/turn ves
power from spin-2 modes to modes with spin-1 and spin-3.

Using our ladder operator forms for twist and turn, we found
simple estimators for the distortions; however, twistitaauses a
centroid shift which needs to be taken into account. Thiddda
the inclusion of a common factds in the estimators for twist and
turn. In addition, any flexion present would contribute to simple
estimator, which should therefore be used either as a meates t
tect any second-order systematic, or to measure real @ragst
twist on scales where flexion is negligible.

We used these estimators to constrain twist for the first time

in the HST STAGES survey. We noted that our estimator has a

larger intrinsic noise scatter compared to 1- or 3-flexiout, its
mean value across the survey is already at an interestieg fav
checking large flexion systematics. We found that mean tigist
consistent with zero in this survey. We also measured twiseta-
tion functions, and found that they too were consistent &éto.

The two quantities introduced in this study complete the set

(© 0000 RAS, MNRASD00, 000-000
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of distortions to second order. They will be of use in testiog
systematic effects, and have a certain elegance of their own
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