17,372 research outputs found
Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets
Data sharing has become of primary importance in many domains such as
big-data analytics, economics and medical research, but remains difficult to
achieve when the data are sensitive. In fact, sharing personal information
requires individuals' unconditional consent or is often simply forbidden for
privacy and security reasons. In this paper, we propose Drynx, a decentralized
system for privacy-conscious statistical analysis on distributed datasets.
Drynx relies on a set of computing nodes to enable the computation of
statistics such as standard deviation or extrema, and the training and
evaluation of machine-learning models on sensitive and distributed data. To
ensure data confidentiality and the privacy of the data providers, Drynx
combines interactive protocols, homomorphic encryption, zero-knowledge proofs
of correctness, and differential privacy. It enables an efficient and
decentralized verification of the input data and of all the system's
computations thus provides auditability in a strong adversarial model in which
no entity has to be individually trusted. Drynx is highly modular, dynamic and
parallelizable. Our evaluation shows that it enables the training of a logistic
regression model on a dataset (12 features and 600,000 records) distributed
among 12 data providers in less than 2 seconds. The computations are
distributed among 6 computing nodes, and Drynx enables the verification of the
query execution's correctness in less than 22 seconds.Comment: Accepted for publication at IEEE Transactions on Information
Forensics and Securit
Monopoles and Holography
We present a holographic theory in AdS_4 whose zero temperature ground state
develops a crystal structure, spontaneously breaking translational symmetry.
The crystal is induced by a background magnetic field, but requires no chemical
potential. This lattice arises from the existence of 't Hooft-Polyakov monopole
solitons in the bulk which condense to form a classical object known as a
monopole wall. In the infra-red, the magnetic field is screened and there is an
emergent SU(2) global symmetry.Comment: 33 pages, 16 figures; v2: ref adde
Stages of development and injury: an epidemiological survey of young children presenting to an emergency department
<p><b>Background:</b> The aim of our study was to use a local (Glasgow, west of Scotland) version of a Canadian injury surveillance programme (CHIRPP) to investigate the relationship between the developmental stage of young (pre-school) children, using age as a proxy, and the occurrence (incidence, nature, mechanism and location) of injuries presenting to a Scottish hospital emergency department, in an attempt to replicate the findings of a recent study in Kingston, Canada.</p>
<p><b>Methods:</b> We used the Glasgow CHIRPP data to perform two types of analyses. First, we calculated injury rates for that part of the hospital catchment area for which reasonably accurate population denominators were available. Second, we examined detailed injury patterns, in terms of the circumstances, mechanisms, location and types of injury. We compared our findings with those of the Kingston researchers.</p>
<p><b>Results:</b> A total of 17,793 injury records for children aged up to 7 years were identified over the period 1997–99. For 1997–2001, 6,188 were used to calculate rates in the west of the city only. Average annual age specific rates per 1000 children were highest in both males and females aged 12–35 months. Apart from the higher rates in Glasgow, the pattern of injuries, in terms of breakdown factors, mechanism, location, context, and nature of injury, were similar in Glasgow and Kingston.</p>
<p><b>Conclusion:</b> We replicated in Glasgow, UK, the findings of a Canadian study demonstrating a correlation between the pattern of childhood injuries and developmental stage. Future research should take account of the need to enhance statistical power and explore the interaction between age and potential confounding variables such as socio-economic deprivation. Our findings highlight the importance of designing injury prevention interventions that are appropriate for specific stages of development in children.</p>
Etude et implémentation d'une solution de BPM: l'outil Bonita BPM
Ce travail traite d’une solution de BPM : Bonita BPM. La première partie présente les BPM en général, ainsi que les BPM utilisés actuellement sur le marché. La seconde partie concerne la solution Bonita BPM, avec une présentation détaillée du logiciel afin de mieux comprendre son installation et son utilisation. La troisième partie est une mise en situation pratique de Bonita BPM avec un exemple fictif, elle mettra en avant la création de processus métier. La dernière partie est une analyse des résultats obtenus dans la partie précédente, elle nous permettra de déterminer si c’est un bon choix de BPM pour les entreprises ou non. Le but de ce travail est d’abord d’analyser un BPM dont le nombre d’utilisateurs ne cesse d’augmenter, puis de déterminer si son utilisation est accessible à toutes les entreprises et s’il est facilement maintenable
Task-phase-specific dynamics of basal forebrain neuronal ensembles.
Cortically projecting basal forebrain neurons play a critical role in learning and attention, and their degeneration accompanies age-related impairments in cognition. Despite the impressive anatomical and cell-type complexity of this system, currently available data suggest that basal forebrain neurons lack complexity in their response fields, with activity primarily reflecting only macro-level brain states such as sleep and wake, onset of relevant stimuli and/or reward obtainment. The current study examined the spiking activity of basal forebrain neuron populations across multiple phases of a selective attention task, addressing, in particular, the issue of complexity in ensemble firing patterns across time. Clustering techniques applied to the full population revealed a large number of distinct categories of task-phase-specific activity patterns. Unique population firing-rate vectors defined each task phase and most categories of task-phase-specific firing had counterparts with opposing firing patterns. An analogous set of task-phase-specific firing patterns was also observed in a population of posterior parietal cortex neurons. Thus, consistent with the known anatomical complexity, basal forebrain population dynamics are capable of differentially modulating their cortical targets according to the unique sets of environmental stimuli, motor requirements, and cognitive processes associated with different task phases
Stellar spectroscopy: Fermions and holographic Lifshitz criticality
Electron stars are fluids of charged fermions in Anti-de Sitter spacetime.
They are candidate holographic duals for gauge theories at finite charge
density and exhibit emergent Lifshitz scaling at low energies. This paper
computes in detail the field theory Green's function G^R(w,k) of the
gauge-invariant fermionic operators making up the star. The Green's function
contains a large number of closely spaced Fermi surfaces, the volumes of which
add up to the total charge density in accordance with the Luttinger count.
Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z
the fermionic quasiparticles dissipate strongly into the critical Lifshitz
sector. Fermions near this critical dispersion relation give interesting
contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Classical integrability in the BTZ black hole
Using the fact the BTZ black hole is a quotient of AdS_3 we show that
classical string propagation in the BTZ background is integrable. We construct
the flat connection and its monodromy matrix which generates the non-local
charges. From examining the general behaviour of the eigen values of the
monodromy matrix we determine the set of integral equations which constrain
them. These equations imply that each classical solution is characterized by a
density function in the complex plane. For classical solutions which correspond
to geodesics and winding strings we solve for the eigen values of the monodromy
matrix explicitly and show that geodesics correspond to zero density in the
complex plane. We solve the integral equations for BMN and magnon like
solutions and obtain their dispersion relation. Finally we show that the set of
integral equations which constrain the eigen values of the monodromy matrix can
be identified with the continuum limit of the Bethe equations of a twisted
SL(2, R) spin chain at one loop.Comment: 45 pages, Reference added, typos corrected, discussion on geodesics
improved to include all geodesic
- …
