124 research outputs found

    Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression

    Get PDF
    Abstract Purpose: Cancer/testis (CT) genes predominantly expressed in the testis (germ cells) and generally not in other normal tissues are aberrantly expressed in human cancers. This highly restricted expression provides a unique opportunity to use these CTgenes for diagnostics, immunotherapeutic, or other targeted therapies. The purpose of this study was to identify those CT genes with the greatest incidence of expression in uterine cancers. Experimental Design: We queried the expression of known and putative CT gene transcripts (representing 79 gene loci) using whole genome gene expression arrays. Specifically, the global gene expressions of uterine cancers (n = 122) and normal uteri (n = 10) were determined using expression data from the Affymetrix HG-U133A and HG-U133B chips. Additionally, we also examined the brother of the regulator of imprinted sites (BORIS) transcript by reverse transcription-PCR and quantitative PCR because its transcript was not represented on the array. Results: Global microarray analysis detected many CT genes expressed in various uterine cancers; however, no individual CT gene was expressed in more than 25% of all cancers. The expression of the two most commonly expressed CT genes on the arrays, MAGEA9 (24 of 122 cancers and 0 of10 normal tissues) and Down syndrome critical region 8 (DSCR8)/MMA1 (16 if 122 cancers and 0 of 10 normal tissues), was confirmed by reverse transcription-PCR methods, validating the array screening approach. In contrast to the relatively low incidence of expression of the other CTgenes, BORIS expression was detected in 73 of 95 (77%) endometrial cancers and 24 of 31 (77%) uterine mixed mesodermal tumors. Conclusions: These data provide the first extensive survey of multiple CT genes in uterine cancers. Importantly, we detected a high frequency of BORIS expression in uterine cancers, suggesting its potential as an immunologic or diagnostic target for these cancers. Given the high incidence of BORIS expression and its possible regulatory role, an examination of BORIS function in the etiology of these cancers is warranted

    Definition of a new blood cell count score for early survival prediction for non-small cell lung cancer patients treated with atezolizumab: Integrated analysis of four multicenter clinical trials

    Get PDF
    Importance Blood cell count test (BCT) is a robust method that provides direct quantification of various types of immune cells to reveal the immune landscape to predict atezolizumab treatment outcomes for clinicians to decide the next phase of treatment. Objective This study aims to define a new BCTscore model to predict atezolizumab treatment benefits in non-small lung cell cancer (NSCLC) patients. Design, Setting, and Participants This study analyzed four international, multicenter clinical trials (OAK, BIRCH, POPLAR, and FIR trials) to conduct post-hoc analyses of NSCLC patients undergoing atezolizumab (anti–PD-L1) single-agent treatment (n = 1,479) or docetaxel single-agent treatment (n = 707). BCT was conducted at three time points: pre-treatment (T1), the first day of treatment cycle 3 (T2), and first day of treatment cycle 5 (T3). Univariate and multivariate Cox regression analyses were conducted to identify early BCT biomarkers to predict atezolizumab treatment outcomes in NSCLC patients. Main Outcomes and Measures Overall survival (OS) was used as the primary end point, whereas progression-free survival (PFS) according to Response Evaluation Criteria in Solid Tumors (RECIST), clinical benefit (CB), and objective response rate (ORR) were used as secondary end points. Results The BCT biomarkers of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) at time point T3 and neutrophil-to-monocyte ratio (NMR) at time point T2 with absolute cutoff values of NLR_T3 = 5, PLR_T3 = 180, and NMR_T2 = 6 were identified as strong predictive biomarkers for atezolizumab (Ate)–treated NSCLC patients in comparison with docetaxel (Dtx)–treated patients regarding OS (BCTscore low risk: HR Ate vs. Dtx = 1.54 (95% CI: 1.04–2.27), P = 0.031; high risk: HR Ate vs. Dtx = 0.84 (95% CI: 0.62–1.12), P = 0.235). The identified BCTscore model showed better OS AUC in the OAK (AUC12month = 0.696), BIRCH (AUC12month = 0.672) and POPLAR+FIR studies (AUC12month = 0.727) than that of each of the three single BCT biomarkers. Conclusion and Relevance The BCTscore model is a valid predictive and prognostic biomarker for early survival prediction in atezolizumab-treated NSCLC patients

    The GYMSSA trial: a prospective randomized trial comparing gastrectomy, metastasectomy plus systemic therapy versus systemic therapy alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard of care for metastatic gastric cancer (MGC) is systemic chemotherapy which leads to a median survival of 6-15 months. Survival beyond 3 years is rare. For selected groups of patients with limited MGC, retrospective studies have shown improved overall survival following gastrectomy and metastasectomies including peritoneal stripping with continuous hyperthermic peritoneal perfusion (CHPP), liver resection, and pulmonary resection. Median survival after liver resection for MGC is up to 34 months, with a five year survival rate of 24.5%. Similarly, reported median survival after pulmonary resection of MGC is 21 months with long term survival of greater than 5 years a possibility. Several case reports and small studies have documented evidence of long-term survival in select individuals who undergo CHPP for MGC.</p> <p>Design</p> <p>The GYMSSA trial is a prospective randomized trial for patients with MGC. It is designed to compare two therapeutic approaches: gastrectomy with metastasectomy plus systemic chemotherapy (GYMS) versus systemic chemotherapy alone (SA). Systemic therapy will be composed of the FOLFOXIRI regimen. The aim of the study is to evaluate overall survival and potential selection criteria to determine those patients who may benefit from surgery plus systemic therapy. The study will be conducted by the Surgery Branch at the National Cancer Institute (NCI), National Institutes of Health (NIH) in Bethesda, Maryland. Surgeries and followup will be done at the NCI, and chemotherapy will be given by either the local oncologist or the medical oncology branch at NCI.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID. NCT00941655</p

    Gene expression profiling of alveolar soft-part sarcoma (ASPS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.</p> <p>Methods</p> <p>For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63).</p> <p>Conclusion</p> <p>Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.</p
    • …
    corecore