18 research outputs found

    Par-4: An Attractive Target for Cancer Therapy

    Get PDF
    Lack of early diagnosis, cancer recurrence, metastasis, and adverse side effects are some of the major problems in the treatment of cancers. Par-4, a tumor suppressor protein, is an attractive target for cancer therapy as it selectively kills cancer cells. Cl-Par-4 is the active fragment of Par-4 that enters the nucleus and selectively induces apoptosis in cancer cells. It has also been reported that Par-4 increases the susceptibility of cancer cells to chemotherapy and reverses cancer recurrence. Further, Par-4 has been shown to play a dual role: inhibition of EMT (Epithelial-mesenchymal transition) as well as assistance in the reverse process, thereby lowering the chance of cancer metastasis. Because of these unique properties of Par-4, it offers an attractive target for developing anticancer therapy. However, so far only the C-terminal coiled-coil domain has been studied structurally. Here, we have optimized conditions that will be helpful in the structural determination of cl-Par-4 using NMR and X-ray crystallography.https://digitalcommons.odu.edu/gradposters2023_sciences/1017/thumbnail.jp

    Characterization of Cl-Par-4: WT vs. Mutant

    Get PDF
    Intrinsically disordered proteins (IDPs) play important roles in regulation of cell signaling pathways as well as cellular processes. Dysregulation of these proteins is associated with several human diseases. Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is categorized as an intrinsically disordered protein and downregulation of this protein has been reported in myriad of cancers including glioma, breast cancers, and prostate cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) plays an active role in tumor suppression by inhibiting several cell survival pathways. Here, we employed site-directed mutagenesis to introduce a point mutation in the cl-Par-4 wildtype (WT) to generate the D313K cl-Par-4 mutant. We have characterized both the mutant and the WT using various biophysical techniques such as CD, DLS, and NMR to determine the effect of the D313K mutation. The results show that D313K cl-Par-4 attains a compact and well-folded helical conformation, possibly a tetramer, similar to that of the WT in presence of high salt at physiological pH. However, D313K does so with half the amount of salt required for the WT. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation.https://digitalcommons.odu.edu/gradposters2023_gradschool/1004/thumbnail.jp

    Backbone Dynamics of the 18.5 kDa Isoform of Myelin Basic Protein Reveals Transient α-Helices and a Calmodulin-Binding Site

    Get PDF
    The 18.5 kDa isoform of myelin basic protein (MBP) is the predominant form in adult human central nervous system myelin. It is an intrinsically disordered protein that functions both in membrane adhesion, and as a linker connecting the oligodendrocyte membrane to the underlying cytoskeleton; its specific interactions with calmodulin and SH3-domain containing proteins suggest further multifunctionality in signaling. Here, we have used multidimensional heteronuclear nuclear magnetic resonance spectroscopy to study the conformational dependence on environment of the protein in aqueous solution (100 mM KCl) and in a membrane-mimetic solvent (30% TFE-d2), particularly to analyze its secondary structure using chemical shift indexing, and to investigate its backbone dynamics using 15N spin relaxation measurements. Collectively, the data revealed three major segments of the protein with a propensity toward α-helicity that was stabilized by membrane-mimetic conditions: T33-D46, V83-T92, and T142-L154 (murine 18.5 kDa sequence numbering). All of these regions corresponded with bioinformatics predictions of ordered secondary structure. The V83-T92 region comprises a primary immunodominant epitope that had previously been shown by site-directed spin labeling and electron paramagnetic resonance spectroscopy to be α-helical in membrane-reconstituted systems. The T142-L154 segment overlapped with a predicted calmodulin-binding site. Chemical shift perturbation experiments using labeled MBP and unlabeled calmodulin demonstrated a dramatic conformational change in MBP upon association of the two proteins, and were consistent with the C-terminal segment of MBP being the primary binding site for calmodulin

    Extensive Sampling of the Cavity of the GroEL Nanomachine by Protein Substrates Probed by Paramagnetic Relaxation Enhancement

    No full text
    The chaperonin GroEL is a 800 kDa nanomachine comprising two heptameric rings, each of which encloses a large cavity or folding chamber. The GroEL cycle involves ATP-dependent capping of the cavity by the cochaperone GroES to create a nanocage in which a single protein molecule can fold. We investigate how protein substrates sample the cavity prior to encapsulation by GroES using paramagnetic relaxation enhancement to detect transient, sparsely populated interactions between apo GroEL, paramagnetically labeled at several sites within the cavity, and three variants of an SH3 protein domain (the fully native wild type, a triple mutant that exchanges between a folded state and an excited folding intermediate, and a stable folding intermediate mimetic). We show that the substrate not only interacts with the hydrophobic inner rim of GroEL at the mouth of the cavity but also penetrates deep within the cavity, transiently contacting the disordered C-terminal tail, and, in the case of the folding intermediate mimetic, the base as well. Transient interactions with the C-terminal tail may facilitate substrate capture and retention prior to encapsulation

    Enhancing the Conformational Stability of the cl-Par-4 Tumor Suppressor via Site-Directed Mutagenesis

    Get PDF
    Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have previously demonstrated that WT cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in the presence of salt, but at an approximately two times lower salt concentration. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation
    corecore