
OLD DOMINION UNIVERSITY

Lack of early diagnosis, cancer recurrence, metastasis, and adverse side effects are some of the major problems in the treatment of Par-4 that a tumor suppressor protein, is an attractive target for cancer sells. Cl-Par-4 is the active fragment of Par-4 that enters the nucleus and selectively induces apoptosis in cancer cells. It has also been reported that Par-4 has been shown to play a dual role: inhibition of EMT (Epithelial-mesenchymal transition) as well as assistance in the reverse process, thereby lowering the chance of these unique properties of Par-4, it offers an attractive target for developing anticancer therapy. However, so far only the C-terminal coiled-coil domain has been studied structurally. Here, we have optimized conditions that will be helpful in the structural determination of cl-Par-4 using NMR and X-ray crystallography.

Introduction

- Cancer: 2nd leading cause of death globally
- Prostate apoptosis response-4 (Par-4): tumor suppressor
- Downregulation of Par-4: reported in many cancers
- Caspase-cleaved Par-4 (cl-Par-4): is an active fragment
- Major obstacles in cancer T/t:
- Lack of early diagnosis
- Cancer recurrence
- Metastasis
- Adverse side effects
- WHY Par-4??- induces selective apoptosis in cancer cells
- Research gap: structure of cl-Par-4 is not known yet

This study focuses on optimizing conditions for structure determination using solution NMR and X-ray crystallography

Schematic showing effect of dysregulation of Par-4/

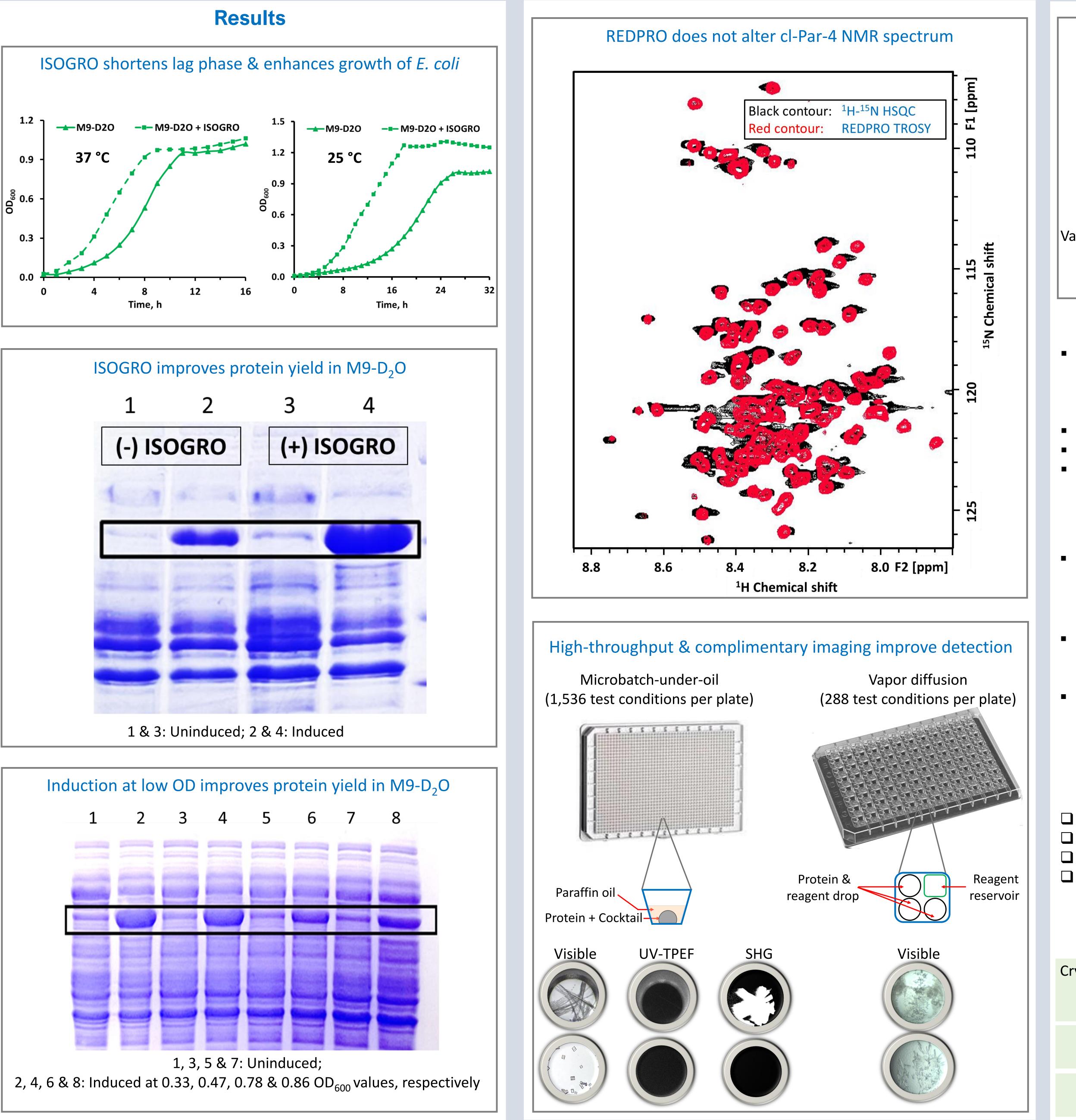
1 EEPD131	G (Not d	rawn to scale) 340
NLS1 VASA	NLS2	NES LZ
	SAC domain	Coiled-coil
PAF (~15 kDa)	cl-Par-4(~2	5 kDa)
	← Structure ?	mm
	Structure	(PDB: 5FIY)

Par-4 domain structure and research gap

Objective

Optimize conditions for structural determination of cl-Par-4 tumor suppressor using solution NMR and X-ray crystallography

Methods

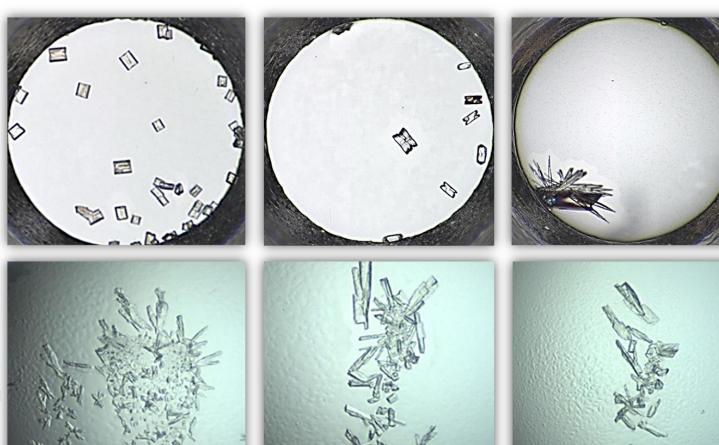

- Protein Expression: in BL 21 (DE3) *Escherichia coli*
- Growth medium: LB and modified M9 minimal media
- Expression vector: modified H-MBP-3C
- Purification: metal affinity chromatography using Ni-column
- *E. coli g*rowth pattern: monitored via OD₆₀₀ readings
- Test expression: using SDS-PAGE
- NMR: using TCI cryoprobe on 700 MHz spectrometer
- Crystal screening: vapor diffusion & microbatch-under-oil

Par-4: an Attractive Target for Cancer Therapy

Krishna K. Raut¹, Antoine Baudin^{2,3}, David S. Libich^{2,3}, Lijun Liu⁴, Scott Lovell⁴, and Steven M. Pascal¹

¹ Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States ² Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States ³ Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States ⁴ Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, United States Email: Kraut001@odu.edu

Abstract



OLD DOMINION UNIVERSITY

Possible cl-Par-4 crystal hits

Under-oi

Vapor diffusion

Conclusions

- ISOGRO supplement in D₂O-based medium
 - ✓ enhances *E. coli* growth
- ✓ improves protein yield
- Induction at low OD \longrightarrow high protein yield in D₂O REDPRO strategy does not improve cl-Par-4 NMR spectrum High-throughput robotic techniques & complimentary imaging tools improve protein crystal screening

Future works

Determine the structure of the cl-Par-4 using solution NMR and X-ray crystallography

Significance

- Knowing structure will help understand the mechanism of action, its interaction with other proteins, and in designing new therapeutics that would potentially target Par-4 Development of either new drugs that mimic the protein's
- activity or therapeutics that target Par-4 will minimize adverse effects, and could possibly reverse cancer recurrence and lower the chance of cancer metastasis

References

Biomolecules **2021,** *11,* 386 Cell Death Dis **2021,** *12,* 47 **Cell Death Differ 2017, 24, 1540-1547 WHO**, **2023**

Acknowledgment

Crystallization screening at the National Crystallization Center at HWI Supported Through NIH Grant R24GM141256 -Also, thanks to Dr. Sarah Bowman at HWI

> Thanks to Dr. Ravi Garimella at COSMIC Lab Old Dominion University, Norfolk, VA 23529, USA

> Dept. of Chemistry & Biochemistry Old Dominion University, Norfolk, VA 23529, USA