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Abstract: Intrinsically disordered proteins play important roles in cell signaling, and dysregulation
of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approx-
imately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered
protein whose downregulation has been observed in various cancers. The caspase-cleaved frag-
ment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival
pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K).
The expressed and purified D313K protein was characterized using biophysical techniques, and the
results were compared to that of the wild-type (WT). We have previously demonstrated that WT
cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at
physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in
the presence of salt, but at an approximately two times lower salt concentration. This establishes that
the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge
repulsion between dimer partners and helps to stabilize the structural conformation.

Keywords: intrinsically disordered proteins (IDPs); prostate apoptosis response-4 (Par-4); tumor
suppressor; site-directed mutagenesis; circular dichroism (CD) spectroscopy; dynamic light scattering
(DLS); nuclear magnetic resonance (NMR) spectroscopy

1. Introduction

Intrinsically disordered proteins/protein regions (IDPs/IDRs) do not follow the con-
ventional sequence-structure-function paradigm [1,2]. These proteins lack a well-defined
tertiary structure under physiological conditions, but many can form structures or struc-
tural ensembles under certain conditions [2]. The propensity of these proteins to switch
conformation upon either interaction with ligands, post-translational modification, or
change in ionic strength or pH, allows them to play crucial roles in cell signaling and regu-
lation [3-9]. Many IDPs/IDRs have been reported to be associated with human diseases
such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer [10-13].

Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is a
predominantly intrinsically disordered protein [14]. This experimental finding is consistent
with its amino acid composition: in Par-4, polar and charged residues such as aspartic
acid, glutamic acid, lysine, and arginine residues are found in abundance, while bulky
hydrophobic residues are less abundant [14]. Order/disorder analysis of full-length Par-4
based on amino acid sequence therefore predicts between approximately 65% and 90%
disorder (Figure 1) depending on the algorithm used.
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Figure 1. (A) Domain diagram of full-length Par-4 and (B-E) disorder prediction of the full-length
Par-4 sequence using: (B) DISOPRED3 [15,16], (C) PONDR [17], (D) IUPred3 [18], and (E) PrDOS [19].

Par-4 expression in healthy cells is ubiquitous while its expression is down-regulated
in a variety of cancers such as prostate, breast, renal, and neuroblastoma [20-24]. In
contrast, over-expression of this protein has been found to be positively associated with
the development of several neurodegenerative disorders [25-27]. Par-4 selectively induces
apoptosis in cancer cells [28]. This selectivity is primarily due to two targeting factors. First,
extrinsic Par-4 enters cells by binding to the surface protein receptor GRP78; GRP78 levels
are elevated in cancer cells [29]. Second, Par-4 must be phosphorylated by PKA at T163 in
order to enter the nucleus; PKA activity is also elevated in cancer cells [22,30].

When apoptosis is activated, full-length Par-4 is cleaved after Asp-131 by caspase-3
to generate two fragments: (i) the 15 kilodalton PAF (Par-4 amino-terminal fragment)
and (ii) the 25 kilodalton cl-Par-4 (cleaved Par-4) as shown in Figure 1A [31]. The active
fragment, cl-Par-4, translocates to the nucleus where it inhibits NF-kB and Bcl-2-mediated
cell survival pathways required by many cancer cells [32-34]. The PAF fragment is believed
to be involved in the rescue of full-length Par-4 from Fbxo45-mediated degradation [35,36].

Like full-length Par-4, the cl-Par-4 fragment contains a high percentage of polar and
charged amino acids and a low content of hydrophobic residues. However, the analysis
shown in Figure 1 indicates that the cl-Par-4 fragment has higher order propensity than
the PAF fragment. Most notably, the C-terminal 80 residues of cl-Par-4 are known to form
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a coiled coil (CC), at least under certain conditions [14,37-39]. Even in the CC, the order
propensity is not strong. This is consistent with the fact that CC regions in their monomeric
state are typically disordered and only fold upon dimerization [40]. Thus, a coiled coil
can be thought of as an equilibrating order/disorder region, and conditions that promote
dimerization concomitantly promote order. Other regions of cl-Par-4 appear to have some
order propensity, or at least weak disorder propensity. These include portions of the SAC
domain [28], which is the minimal region needed to trigger apoptosis in certain cells, and
portions of the linker that connects the SAC domain to the CC.

Our previous studies have shown that cl-Par-4 achieves a compact, highly helical
(approximately 80% helix), and stable conformation in the presence of either high salt or
acidic pH [37,38]. We have also demonstrated that cl-Par-4 shows a similar conformation
in the presence of divalent cations as it does in the presence of monovalent cations, but at a
five times lower cation concentration [39]. This requirement of high salt or low pH could
be due to the existence of inter-helical electrostatic repulsion between charged residues at
the leucine zipper dimer interface near the C-terminus [41,42].

To test this hypothesis, we constructed, expressed, and purified a D313K cl-Par-
4 mutant to attempt to reduce the above-mentioned inter-helical charge repulsion and
perhaps replace it with an inter-helical salt bridge that stabilizes the conformation. We
investigated the cl-Par-4 D313K conformation vs. salt concentration and vs. pH and
compared the results to those of the WT cl-Par-4. We employed circular dichroism (CD)
spectroscopy, dynamic light scattering (DLS), and nuclear magnetic resonance (NMR). The
data show that D313K behaves in many ways like the WT: it forms soluble aggregates in the
presence of low salt at neutral pH and acquires a compact, folded, and stable conformation
in the presence of high salt or low pH. However, the D313K mutant converts from soluble
aggregates to soluble, highly helical, and compact tetramers at a lower salt concentration
than is required by the WT. This confirms that the D313K mutation, by reducing inter-helical
charge-charge repulsion, stabilizes the compact helical conformation of cl-Par-4.

2. Materials and Methods
2.1. Expression and Purification of the D313K cl-Par-4 Mutant

The cl-Par-4 mutant (D313K) construct was prepared by site-directed mutagene-
sis [43] using a modified expression vector, H-MBP-3C [44], containing codon-optimized
(for E. coli expression) human wild-type cl-Par-4 (132-340) as a template. In the pro-
cess, the template DNA was PCR-amplified in two separate tubes using separate mu-
tant forward (5’-GACCTGCTGAACCGTAAACTGGACGATATTGAAG-3’) and mutant
reverse (5’-CTTCAATATCGTCCAGTTTACGGTTCAGCAGGTC-3’) primers (Eurofins
Genomics, Louisville, KY, USA). Then, reaction mixtures from the forward and reverse
primer tubes were combined and denatured at 95 °C for 5 min, then gradually cooled to
37 °C. The (methylated) non-mutated parental strands were removed by overnight diges-
tion with Dpnl enzyme. The mutant construct was purified using a Wizard SV Gel and
PCR Clean-Up System kit (Promega, Madison, WI, USA) and verified via DNA sequencing,.
Sequence-verified plasmids containing the D313K mutant were then transformed into
electrocompetent BL21 (DE3) codon plus E. coli cells.

Expression and purification of D313K were conducted following the established
procedure for WT cl-Par-4 [37,39]. In brief, BL21 (DE3) codon plus E. coli cells, transformed
with the codon-optimized mutant construct D313K, were cultured in Luria-Bertani (LB)
medium supplemented with ampicillin for selective growth at 37 °C. The cells were induced
for protein expression by adding 0.5 mM of isopropyl thio--D-galactoside (IPTG) when
an optical density (ODgg) of 0.8-0.9 was reached. The induction was followed by further
growth at a reduced temperature of 15 °C until an ODggg of 1.5-1.6 was reached. The cells
were then harvested and lysed and the expressed protein was purified via immobilized
metal affinity chromatography using an HisTrap HP 5 mL Ni column (GE Healthcare,
Uppsala, Sweden) attached to an AKTA pure chromatography system (GE Healthcare,
Uppsala, Sweden). The H-MBP tag was removed by cleavage using a His-tagged 3C-
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protease enzyme [44]. The purified D313K protein was then dialyzed against a high-salt
storage buffer (10 mM Tris, 1 M NaCl, 1 mM TCEP, pH 7.0). In order to improve the
precision of the sample concentrations, the protein was concentrated to approximately
10 mg/mL (using a 10 kDa MWCO Vivaspin Turbo 15 centrifugal concentrator; Sartorius,
Epsom, UK) and then diluted to 0.2 mg/mL for data analysis. Protein samples that were
not immediately used were lyophilized for storage and later reconstituted with sterile DI
water when needed. Tests show identical behavior before and after lyophilization.

2.2. Expression and Purification of Isotopically (1°N) Labeled WT & D313K

Expression and purification of isotopically labeled WT and D313K were conducted
using a similar procedure as the one used for the unlabeled D313K, with slight modification.
BL21 (DE3) codon plus E. coli cells transformed with a codon-optimized construct of WT
or D313K were first grown in LB medium supplemented with ampicillin for biomass
production until an ODg of 0.6-0.8 was reached. The cells were then harvested, washed
with M9 salt solution (without carbon and nitrogen sources), resuspended in isotopically
(*>N) labeled M9 minimal medium, and incubated at 37 °C for an hour in a shaking
incubator to allow the recovery of growth and the clearance of unlabeled metabolites. After
an hour of incubation, the cells were induced for protein expression by adding IPTG to a
concentration of 0.5 mM, followed by overnight (approximately 16 h) incubation at 15 °C
until the ODgg reached 1.4-1.6. Purification of isotopically labeled WT and D313K was
conducted following the same method as used for the purification of unlabeled D313K,
except the proteins were never lyophilized. The purified and concentrated proteins were
stored at 4 °C in a high-salt storage buffer (10 mM Tris, 1 M NaCl, 1 mM TCEP) of pH 7.0.

2.3. Circular Dichroism Spectroscopy

The secondary structure of the protein was analyzed by recording CD spectra on
a J-815 CD spectrometer (Jasco, Easton, MD, USA) in the far-UV region (195-260 nm
wavelength). For all CD samples, the protein concentration was adjusted to 0.2 mg/mL
(0.0083 mmol/L). Each sample contained approximately 20-40 mM NaCl as a residual salt
from dilution of the high-salt storage buffer (10 mM Tris, 1 M NaCl, 1 mM TCEP, pH 7.0),
which is excluded from the calculation of final salt concentrations for simplicity. A single
scan was recorded at a scan speed of 20 nm/min using a 1 mm pathlength quartz cuvette at
25 °C. Respective buffer blanks were used for each of the samples and were later subtracted
from the sample spectra. The resultant spectra were smoothed using a means-movement
function of 25 nm. To easily compare the spectra, the intensities of all the CD spectra were
reported in molar ellipticity units.

Similarly, to study the effect of pH on D313K cl-Par-4 and the WT, samples were
prepared at a concentration of 0.2 mg/mL using Tris buffer of varying pH (4.0, 5.0, and 7.0).
However, the WT samples were in 10 mM MgSO, whereas the D313K samples were in
10 mM NaCl buffers.

2.4. Dynamic Light Scattering

Hydrodynamic radii (Stokes radii) of the protein particles in solution were measured
by dynamic light scattering (DLS) using a NanoBrook Omni particle sizer and zeta potential
analyzer (Brookhaven Instruments Corporation, Holtsville, NY, USA). Sample preparation
followed a similar procedure to the one used for CD spectroscopy: the protein concentration
was adjusted to 0.2 mg/mL. DLS data were recorded at ambient temperature using a
disposable plastic cuvette of 1 cm pathlength, a standard laser diode laser at 640 nm
wavelength, and a scattering angle of 173°. A total of five scans were recorded for each of
the samples and hydrodynamic radii for the size of the protein particles were calculated
from the mean effective diameter obtained from the summary statistical report of the
NanoBrook software. Some outlier values in hydrodynamic diameter from the five-scan
series were excluded from the dataset, and mean diameters and radii were recalculated
manually from the remaining data points.
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Sample preparation for the study of the effect of pH was conducted as described above
for the CD samples.

2.5. Isotopically (">N) Labeled WT/D313K Sample Preparation for NMR

We previously found that cl-Par-4 at pH 7.0 requires a high salt concentration to form
compact helical tetramers [38,39]. For NMR analysis, high salt and tetramer formation
are problematic in terms of the signal-to-noise ratio and line width. Therefore, for NMR
analysis, we employed the conditions of pH 4, which we have shown can induce a compact
helical dimer at low salt concentration [37]. To change sample conditions to pH 4.0 with low
salt while avoiding precipitation near the protein pl of 5.39, a step-wise dilution/titration
procedure was used: 1.0 mL of concentrated (>10 mg/mL) cl-Par-4 in pH 7.0 buffer (10 mM
Tris, 1 M NaCl, 1 mM TCEP, pH 7.0) was added dropwise to a solution of 49.0 mL of pH 3.9
buffer (10 mM Tris, 10 mM NaCl, 1 mM TCEP, pH 3.9) with constant stirring. The result
was a 50 mL solution of diluted cl-Par-4 (~0.2 mg/mL) at pH 4.0 with 30 mM NaCl. This
was then filtered using a 0.22 um steriflip (Millipore Steriflip, Millipore-Sigma, Darmstadt,
Germany), followed by concentration of the protein to 0.5 mM (12 mg/mL) using a 10 kDa
MWCO Vivaspin Turbo 15 centrifugal protein concentrator (Sartorius, Epsom, UK). To
prevent precipitation upon the addition of D,O to the pH 4.0 cl-Par-4 NMR samples, D,O
was titrated to pH 4 in NMR buffer before being added to the NMR samples for deuterium
lock purposes.

2.6. NMR Spectroscopy

NMR spectra were recorded on a Bruker Avance NEO spectrometer operating at a
proton Larmor frequency of 700.13 MHz using a 5 mm TCI z-axis gradient cryogenic probe.
All spectra were recorded at a temperature of 298 K. Uniformly *N-labeled WT or D313K
samples were used at a concentration of 0.5 mM, with 7% D,O added for locking purposes.
'H,N-HSQC spectra were recorded with 64* and 1024* complex points in indirect (*°N)
and direct (\H) dimensions, respectively, with acquisition times of 41 ms and 112.6 ms,
respectively, for the WT protein. Similar parameters were used for the D313K mutant but
with an acquisition time of 37.5 ms in the indirect dimension (15N). For both spectra, the
data were apodized with a sine bell function and zero-filled to twice the size of the recorded
matrix for data analysis. All spectra were initially processed with TopSpin 4 software and
further analyzed with CcpNmr analysis 3.1.0 [45].

3. Results
3.1. Effect of the D313K Mutation on CD Spectra

Previously, we reported concentration-dependent effects of salts on the CD spectra
of WT cl-Par-4. An intense spectrum characteristic of ~80% alpha-helix content (with
two intensity minima at 208 and 222 nm wavelengths) was found in the presence of
500 mM or higher concentrations of either of the monovalent cations sodium or potassium
(Figure 2A) [38,39]. The spectral intensity decreases with decreasing salt concentration,
with an intermediate intensity at 250 mM salt. At high salt concentration, the 829 /6203
ratio is less than one, which is consistent with non-coiled coil helices [46]. Here, D313K
cl-Par-4 shows a similar trend as the WT: decreasing CD intensity and increasing 6227 /0208
ratio with decreasing NaCl (Figure 2B). However, the results are shifted to lower salt
concentrations. For instance, at 250 mM NaCl, the WT spectrum is not intense, while
the D313K spectrum is almost completely converted into the highly helical spectrum
characteristic of the well-folded tetramer. The behavior of D313K at intermediate salt
concentrations (Figure 2C) shows this trend clearly. These results indicate that the D313K
protein requires approximately half the amount of salt as the WT to produce a high-intensity
helical CD spectrum.

We also investigated the effect of a divalent cation (Mg2+) on the structure of D313K
and compared the results to that of the WT. We previously showed that magnesium has a
similar effect as sodium on WT cl-Par-4 but at an approximately 5-fold lower ion concen-
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tration (Figure 2D) [39]. Here, we found that D313K responded similarly to magnesium
compared to the WT but at an additional 2-fold lower ion concentration (Figure 2E). For
instance, 50 mM MgSO, produces an intermediate spectrum for the WT but produces
a high intensity spectrum resembling the helical tetramer conformation for D313K. The
behavior of D313K at intermediate magnesium concentrations (Figure 2F) shows this trend
clearly. Again, the 6555 /650g ratio for the high intensity spectra is less than one, indicating
non-coiled coil helix formation. These results are in harmony with the results obtained with
the monovalent cation and indicate that D313K requires approximately half the amount of
salt as the WT to produce the compact helical conformation, regardless of whether the salt
contains monovalent or divalent cations.
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Figure 2. CD spectra of cl-Par-4 as a function of cation concentration for (A) WT with Na* [39];
(B,C) D313K with Na*; (D) WT with Mg?* [39]; and (E,F) D313K with Mg?*. The intermediate salt
concentrations (250 mM NaCl and 50 mM MgSOy) for which the WT and mutant CD spectra differ
the most are marked with a dot. All data were acquired at pH 7.0 and 25 °C.

3.2. Effect of the D313K Mutation on Particle Size

The size of the particles in solution provides an indirect means of measuring conforma-
tional changes in proteins, at least in terms of the self-association state. Here, we compared
the hydrodynamic sizes of WT cl-Par-4 (Figure 3A) with those of D313K (Figure 3B) under
varying salt conditions using dynamic light scattering (DLS). We found that the D313K
particles were substantially larger than the WT particles under low salt conditions, but
significantly smaller under high salt conditions (Figure 3A,B). In each panel, a red dashed
demarcation line is drawn to indicate the transition from large to small particles. Note that
the demarcation line shifts to lower salt concentrations for the D313K data. These data are
consistent with the CD spectra of Figure 2, in that high CD intensity correlates with small
particle size. A similar trend is seen with the divalent cation magnesium (Figure 3C,D):
D313K produces larger particles than WT at low MgSO,, but smaller particles at high
MgSO,. Again, the demarcation line shifts to lower salt concentration for D313K, and small
particle size (Figure 3D) corresponds to high-intensity CD spectra (Figure 2E).

3.3. Effect of the D313K Mutation on CD Spectra and Particle Size at Low Salt as a Function of pH

WT cl-Par-4 produces CD spectra characteristic of high helicity at pH 4, even in the
presence of only low salt concentration (Figure 4A) [37]. Low salt with higher pH results in
a drastic reduction in CD intensity (Figure 4A) and large particle size (Figure 4C). A similar
trend was seen with D313K, with intense CD spectra and small particle size at pH 4 and
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low salt (Figure 4B,D, respectively) and even larger particle size than the WT at higher pH
(Figure 4D). These results show that the D313K mutant retains the pH dependence that was
found with the WT cl-par-4, particularly in terms of particle size reduction and secondary

structure at pH 4.
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Figure 3. Hydrodynamic size of cl-Par-4 as a function of cation concentration for (A) WT with Na* [39];
(B) D313K with Na*; (C) WT with Mg?* [39]; and (D) D313K with Mg?*. All data were acquired at
pH 7.0 and ambient temperature. High salt conditions are indicated by a shaded background. The

demarcation line between large and small particles is indicated by a dashed red line. The intermediate
salt concentrations (250 mM NaCl and 50 mM MgSO,) for which the WT and mutant hydrodynamic
radii differ the most are marked with a dot. The smallest hydrodynamic radii are at the highest salt
concentration in each panel (A-D): 230 £ 10 nm, 125 + 60 nm, 190 £ 5 nm, and 220 £ 60 nm, respectively.
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Figure 4. Effect of pH on low salt samples. (A) CD spectra of WT; (B) CD spectra of D313K;
(C) hydrodynamic radii of WT (the Stokes radius at pH 4 is 45 + 1 nm); and (D) hydrodynamic radii
of D313K (the Stokes radius at pH 4 is 85 &= 15 nm). The asterisk indicates that the hydrodynamic
radius at pH 5 extends off the graph to 17,800 nm. The WT samples contain 10 mM MgSO, while the
D313K samples contain 10 mM NaCl. All data were recorded at ambient temperature.

3.4. Effect of the D313K Mutation on NMR Spectra

To monitor the effect of the D313K mutation on tertiary structure, 1H,15N-HSQC spectra
were obtained with uniformly '°N-labeled WT and D313K cl-Par-4 at pH 4 (Figure 5). The
nearly perfect overlay of the two spectra provides no indication of change in tertiary structure.
This is consistent with the CD and DLS results of the previous section that indicate that the
WT and D313K proteins have similar secondary structures and particle sizes at pH 4.

K- = - 110
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E

- 115 4
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£
of 120
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1 T
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'H-chemical shift (ppm)
Figure 5. Overlay of 1H,15N-HSQC spectra of WT (black contours) and D313K (red contours). Spectra

were recorded on a 700 MHz spectrometer with a cryoprobe. Sample conditions were 0.5 mM protein
with 10 mM Tris, 30 mM NaCl, and 1 mM TCEP, at pH 4.0 and a temperature of 298 K.
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4. Discussion
Influence of Salts on D313K vs. WT

The approximately 25 kDa C-terminal fragment of the Par-4 tumor suppressor that
is released by caspase-induced cleavage (cl-Par-4) is an active fragment that plays a key
role in apoptosis induction in cancer cells [31,47]. Sequence analysis suggests disorder
in 60-85% of cl-Par-4 depending upon the prediction tool used (see Figure 1), with the
highest order propensity in the coiled coil region, which comprises less than 40% of cl-Par-4.
However, CD spectra and scattering data under in vitro conditions of acidic pH or high
salt show an approximately 80% helical and compact conformation of dimers or tetramers,
respectively [37-39]. Structural models of the dimer and tetramer conformations are
provided in Figure 6. This high helical content clearly indicates that, at least under these
conditions, alpha helix forms in cl-Par-4 outside of the CC region. The most likely site of
this additional helicity is in the SAC domain, which shows some order propensity based on
sequence analysis (see Figure 1). At pH 7, a monovalent cation (NaCl or KCI) concentration
of 500 mM or a divalent cation (MgCl, or MgSO,) concentration of 100 mM is required to
produce the helical tetramer [38,39]. Based on previous mutagenic analysis of the isolated
leucine zipper (LZ) of rat Par-4 [41], we hypothesized that charge—charge repulsion between
D313 and E318 in the LZ of human Par-4 (see Figure 7) is at least partly responsible for the
salt and pH sensitivity of cl-Par-4.

(A) {B)

Figure 6. Structural models of cl-Par-4. (A) Dimer form, consistent with acidic pH data. Model gener-
ated using GalaxyTBM on the GalaxyWEB server using rat Par-4 CC domain crystal structure (pdb
5fiy_A) as a template and allowing the remainder of the protein to fold computationally [37,48,49];
(B) Tetramer form, consistent with high salt data. Model generated using GALAXYWEB HOMOMER
on the GalaxyWEB server using pdb 5DOL (YabA) as a template for the four central helices and
allowing the remainder of the protein to fold computationally [38,48,50]. Each color represents a
distinct monomer.

To test this hypothesis, we created a D313K mutant of human cl-Par-4, which eliminates
the possibility of D313-E318 charge repulsion (see Figure 7) and potentially replaces it with
a salt bridge. The D313K cl-Par-4 mutant was tested for pH and salt sensitivity. Analyses of
the CD spectra and DLS data show that D313K cl-Par-4 forms approximately 80% helical
particles under high salt and low pH conditions, similar to the behavior of WT cl-Par-4 (see
Figure 2). However, the threshold for high salt is shifted to an approximately two-fold lower
concentration. That is, 250 mM NaCl or 50 mM MgSQOy are sufficient to induce the intense
helical CD spectra that are seen only at twice this salt concentration with WT cl-Par-4.



Biomolecules 2023, 13, 667

10 of 15

Figure 7. Helical wheel diagram of human Par-4 LZ dimer. The red dashed line indicates inter-helical
charge repulsion between the two acidic residues D313 and E318.

DLS data of D313K at these conditions (see Figure 3) indicate particle sizes (~565 nm
at 250 mM NaCl and ~375 nm at 50 mM MgSQOj,) that are approximately three-fold smaller
than the WT cl-Par-4 particles (~1450 nm at 250 mM NaCl and ~1050 nm at 50 mM MgSO,).
However, D313K hydrodynamic radii consistent with the tetramer (~200 nm) were obtained
only at higher salt concentration (500 mM NaCl or 100 mM MgSQOj,). Smaller particle sizes,
consistent with dimer formation, were obtained at pH 4 for the WT (~45 nm) and D313K
(~85 nm), although a slightly higher value was seen for D313K (see Figure 4).

CD spectroscopy is a sensitive probe of secondary structure, but the potential exists
that tertiary interactions could be disrupted by mutation [51-53]. Therefore, NMR spec-
troscopy was used to further analyze the effect of the D313K mutation. Nearly identical
'H,1>N-HSQC spectra show that under the NMR spectroscopy conditions, little, if any,
difference is detected between the WT and D313K cl-Par-4 three-dimensional structures
(see Figure 5). Due to superior NMR spectral characteristics at pH 4 and low salt relative
to pH 7 and high salt, the NMR studies were performed at pH 4. The high salt required
for the formation of small particles at pH 7 reduces the intensity of NMR spectra, partic-
ularly for cryoprobes, due to effects on tuning, matching, pulse length, and conductivity.
Moreover, tetramer formation (at pH 7) produces an approximately 100 kilodalton species
which tumbles slowly and therefore broadens lines, leading to considerable intensity loss
in NMR spectra compared to the more rapidly tumbling dimer (50 kilodaltons) present at
pH 4. Nevertheless, the combination of nearly identical NMR spectra at pH 4 with nearly
identical CD spectra and similar DLS results at high salt provides considerable evidence of
conserved tertiary structure in D313K relative to the WT cl-Par-4.

The main difference observed between WT cl-Par-4 and the mutant is thus the propen-
sity to form higher order self-associations, a propensity that is reduced for D313K at
intermediate to high salt concentrations (above 250 mM NaCl or 50 mM MgSQy,) as dis-
cussed above, but paradoxically increases at lower salt concentrations (see Figure 3). This
is seen with the pH dependence as well: D313K under low salt conditions and non-optimal
pH (pH 5 and pH 7) forms larger particles than does the WT (see Figure 4). It should be
noted, however, that scattering techniques are highly sensitive to the largest species in a
distribution of particles sizes and that uncertainty in hydrodynamics radii measurement
provides some insight, but not all information, regarding particle size distribution [54].
Consequently, the DLS results by no means indicate that all particles are of the size indicated
by the mean Stokes radius measurements. However, the fact remains that D313K displays
an additional tendency to form at least a small number of aggregates under non-optimal
salt and pH conditions.



Biomolecules 2023, 13, 667

110f15

A common theme in protein folding is that misfolding results in exposure of the
hydrophobic core, which can lead to subsequent aggregation due to intermolecular hy-
drophobic interactions [55,56]. For a coiled coil, the hydrophobic core is not contained
within one molecule, but is effectively the helix-helix dimer interface. This interface in-
cludes a leucine heptad repeat in an LZ region as well as other hydrophobic residues in
both LZ and non-LZ coiled coils. A smaller number of polar residues are also typically
present at or near the dimer interface. This aids folding by requiring a specific interhelical
alignment in order to promote favorable charge—charge interactions and avoid unfavorable
ones. This calls into question the purpose of the D313-E318 charge-charge repulsion at
the Par-4 LZ interface. Other charged and polar residues at the interface would appear to
contribute to stability and/or specificity. For instance, the E320-K325 interaction forms a
salt bridge (see Figure 8). In addition, two asparagine residues at “a” position of the LZ
should also help to properly align the helices, as they would preferentially interact with
the two corresponding asparagine residues in the dimer partner, disfavoring a change of
register or “sliding” of one helix relative to the other (Figure 8, unlabeled side chains).

Figure 8. Polar interactions at the cl-Par-4 CC interface. The D313-E318 repulsion, along with the
E320-K325 salt bridge and two Asn-Asn close contacts, are shown. A portion of the crystal structure
of the rat Par-4 CC domain is shown, but for discussion purposes, residue numbering has been
changed to coincide with the numbering of human Par-4. (PDB 5FIY, [49]).

It thus seems that the D313-E318 repulsion would be counter-productive to protein
folding, and therefore its elimination and replacement with an additional K313-E318 salt
bridge would stabilize the dimer and prevent aggregation. This is the case under high salt
conditions (pH 7, 250 mM or higher NaCl, or 50 mM or higher MgSQO;), but it is not the
case at low salt concentration or non-optimal pH, where larger particles are formed by the
mutant. It appears that unintended consequences are introduced by the D313K mutation
under some conditions.

Along these lines, it should be noted that protein folding is an exquisitely balanced
process. Stability of a protein to unfolding is typically around the order of 50 kJ /mol, which
is closer to the strength of a hydrogen bond than to the strength of a covalent bond [57].
It is also well known that proteins from thermophiles require extra stability to withstand
heat-induced unfolding and that the extra stability introduced is just sufficient to make the
protein fold marginally stable in its native conditions: stability is not maximized. Even
in thermophiles, stability is maintained only slightly above the unfolding threshold [58].
This is thought to be a required characteristic of proteins, allowing them to “breathe” or
otherwise sample alternative conformations that may be necessary for activity. In the
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case of Par-4, the CC region is known to be the point of contact with coiled coil regions
of important effector proteins, such as the Wilms’ tumor suppressor (WT1) [59]. If this
contact is in the form of a heterodimeric CC, then some instability of the cl-Par-4 CC could
assist with interactions with WT1 and other CC-containing molecules. Alternatively, the
interaction may be in the form of a tetramer and thus may involve a heteromolecular analog
of the cl-Par-4 tetramer that forms at high salt concentration. Again, disruption of the
cl-Par-4 tetramer could then be a requirement for interaction with partners. Thus, it would
be instructive to test whether the D313K mutation affects the ability of cl-Par-4 to bind WT1
and other CC-containing partners by either increasing or decreasing the stability of the
cl-Par-4 tumor suppressor under conditions prevailing in the cell.

It is difficult to interpret the meaning of higher order structure formation (e.g., aggre-
gation) in vitro as the in vivo environment contains a far lower concentration of cl-Par-4
than is required for CD or NMR spectroscopy, and the cellular environment is also filled
with many other molecules and surfaces that could interact and influence self-interactions
of cl-Par-4. Some of these interactions are necessary for the localization of cl-Par-4. We have
mentioned that cl-Par-4 can induce apoptosis selectively in cancer cells. This selectivity has
been linked to two protein—protein interactions. First, cl-Par-4 selectively enters cancer cells
by binding GRP78 at the cell surface; GRP78 is expressed at higher levels in cancer cells.
This interaction involves the SAC domain of cl-Par-4. In addition, the SAC domain must be
phosphorylated by PKA at position T163 in order to promote nuclear entry and subsequent
down-regulation of self-survival pathways. Although we have not found evidence of
naturally occurring D313K mutations, this engineered mutant may be useful. It is possible
that by influencing folding stability, the D313K mutation could affect the ability of cl-Par-4
to interact with GRP78 and PKA and hence could affect its ability to traverse both the cell
membrane and the nuclear membrane. Any such effect upon interactions and localization
would be instructive as to the mechanism of action of cl-Par-4 and could potentially lead to
more selective agents against cancer cells. The results of the in vivo experiments needed to
probe these possibilities will appear in due course.
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