28 research outputs found

    The effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers

    Get PDF
    CO oxidation catalysts with high activity at 25 to 100 C are important for long life, closed cycle operation of pulsed CO2 lasers. A reductive pretreatment with either CO or H2 was shown to significantly enhance the activity of a commercially available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment of no pretreatment. Pretreatment at temperatures of 175 C and above causes an initial dip in the observed CO2 yield before the steady state yield is attained. This dip was found to be caused by dehydration of the catalyst during pretreatment and is readily eliminated by humidifying the catalyst or the reaction gas mixture. It is hypothesized that the effect of humidification is to increase the concentration of OH groups on the catalyst surface which play a role in the reaction mechanism

    The Orientation of Crystallites in Molded Graphites

    Get PDF
    Orientation of crystallites in molded artificial graphite

    Alternative catalysts for low-temperature CO-oxidation

    Get PDF
    MnO sub x, Ag/MnO sub x, Cu/MnO sub x, Pt/MnO sub x, Ru/MnO sub x, Au/CeO sub x, and Au/Fe2O3 were synthesized and tested for CO oxidation activity in low concentrations of stoichiometric CO and O2 at 30 to 75 C. Catalytic activity was measured for periods as long as 18000 minutes. At 75 deg Au/MnO sub x is most active sustaining nearly 100 percent CO conversion for 10000 minutes. It also retains high activity at 50 and 30 C with negligible decay in activity. A direct comparison between an unpretreated 10 percent Au/MnO sub x catalyst and an optimized 19.5 percent Pt/SnO sub 2 (pretreated) catalyst shows that the Au/MnO sub x catalyst exhibits much higher catalytic activity and far superior decay characteristics. Other catalysts including Au/CeO sub x and Au/Fe2O3 also perform well. The Cu/MnO sub x exhibits a high initial activity which decays rapidly. After the decay period the activity remains very stable making Cu/MnO sub x a potential candidate for long-term applications such as CO2 lasers in space

    ISS and TPD study of the adsorption and interaction of CO and H2 on polycrystalline Pt

    Get PDF
    The adsorption and interaction of CO and H2 on polycrystalline Pt has been studied using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). The ISS results indicate that the initial CO adsorption on Pt takes place very rapidly and saturates the Pt surface with coverage close to a monolayer. ISS also shows that the CO molecules adsorb at an angular orientation from the surface normal and perhaps parallel to the surface. A TPD spectrum obtained after coadsorbing C-12 O-16 and C-13 O-18 on Pt shows no isotopic mixing, which is indicative of molecular CO adsorption. TPD spectra obtained after coadsorbing H2 and CO on polycrystalline Pt provides evidence for the formation of a CO-H surface species

    Chemisorption studies of Pt/SnO2 catalysts

    Get PDF
    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface

    Characterization study of polycrystalline tin oxide surfaces before and after reduction in CO

    Get PDF
    Polycrystalline tin oxide surfaces have been examined before and after reduction in 40 Torr of CO at 100 and 175 C using Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), ion scattering spectroscopy (ISS) and electron stimulated desorption (ESD). The changes in the surface composition and chemical states of the surface species generally are subtle for the reductive conditions used. However, significant changes do occur with regard to the amounts and the chemical forms of the hydrogen-containing species remaining after both the 100 and 175 C reductions

    Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers

    Get PDF
    Low-temperature CO-oxidation catalysts are necessary for closed-cycle pulsed CO2 lasers as well as for other applications, including air purification. The papers presented in this volume discuss several such catalysts, including information on catalyst preparation, techniques for enhancing catalyst performance, laboratory and laser test results, and mechanistic considerations

    Platinized tin oxide catalysts for CO2 lasers: Effects of pretreatment

    Get PDF
    Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as PtO2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment

    Ambient-temperature co-oxidation catalysts

    Get PDF
    Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions

    Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Get PDF
    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed
    corecore