8 research outputs found

    Deficiency of filamin A in endothelial cells impairs left ventricular remodelling after myocardial infarction

    No full text
    Aims: Actin-binding protein filamin A (FLNA) regulates signal transduction important for cell locomotion, but the role of FLNA after myocardial infarction (MI) has not been explored. The main purpose of this study was to determine the impact of endothelial deletion of FLNA on post-MI remodelling of the left ventricle (LV). Methods and results: We found that FLNA is expressed in human and mouse endothelial cells (ECs) during MI. To determine the biological significance of endothelial expression of FLNA, we used mice that are deficient for endothelial FLNA by cross-breeding adult mice expressing floxed Flna (Flnao/fl) with mice expressing Cre under the vascular endothelial-specific cadherin promoter (VECadCre+). Male Flnao/fl and Flnao/fl/VECadCre+ mice were subjected to permanent coronary artery ligation to induce MI. Flnao/fl/VECadCre+ mice that were deficient for endothelial FLNA exhibited larger and thinner LV with impaired cardiac function as well as elevated plasma levels of NT-proBNP and decreased secretion of VEGF-A. The number of capillary structures within the infarcted areas was reduced in Flnao/fl/VECadCre+ hearts. ECs silenced for Flna mRNA expression exhibited impaired tubular formation and migration, secreted less VEGF-A, and produced lower levels of phosphorylated AKT and ERK1/2 as well as active RAC1. Conclusion: Deletion of FLNA in ECs aggravated MI-induced LV dysfunction and cardiac failure as a result of defective endothelial response and increased scar formation by impaired endothelial function and signalling

    Targeting filamin A reduces K-RAS-induced lung adenocarcinomas and endothelial response to tumor growth in mice

    Get PDF
    Background: Many human cancer cells express filamin A (FLNA), an actin-binding structural protein that interacts with a diverse set of cell signaling proteins, but little is known about the biological importance of FLNA in tumor development. FLNA is also expressed in endothelial cells, which may be important for tumor angiogenesis. In this study, we defined the impact of targeting Flna in cancer and endothelial cells on the development of tumors in vivo and on the proliferation of fibroblasts in vitro. less thanbrgreater than less thanbrgreater thanMethods: First, we used a Cre-adenovirus to simultaneously activate the expression of oncogenic K-RAS and inactivate the expression of Flna in the lung and in fibroblasts. Second, we subcutaneously injected mouse fibrosarcoma cells into mice lacking Flna in endothelial cells. less thanbrgreater than less thanbrgreater thanResults: Knockout of Flna significantly reduced K-RAS-induced lung tumor formation and the proliferation of oncogenic K-RAS-expressing fibroblasts, and attenuated the activation of the downstream signaling molecules ERK and AKT. Genetic deletion of endothelial FLNA in mice did not impact cardiovascular development; however, knockout of Flna in endothelial cells reduced subcutaneous fibrosarcoma growth and vascularity within tumors. less thanbrgreater than less thanbrgreater thanConclusions: We conclude that FLNA is important for lung tumor growth and that endothelial Flna impacts local tumor growth. The data shed new light on the biological importance of FLNA and suggest that targeting this protein might be useful in cancer therapeutics.Funding Agencies|The Swedish Society of Medicine||The Assar Gabrielsson Foundation||The Sahlgrenska University Hospital||The Swedish Research Council||The Swedish Cancer Society||</p
    corecore