67 research outputs found

    YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs.</p> <p>Results</p> <p>We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly <it>in vitro</it>. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes.</p> <p>Conclusion</p> <p>These results suggest that YB-1 may regulate microtubule assembly <it>in vivo </it>and that its interaction with tubulin may contribute to the control of mRNA translation.</p

    Polyamine Sharing between Tubulin Dimers Favours Microtubule Nucleation and Elongation via Facilitated Diffusion

    Get PDF
    We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends). This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine) are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics

    Haptic Environment: A Multi-Sensory Architecture

    No full text

    High-Resolution Imaging of Microtubules and Cytoskeleton Structures by Atomic Force Microscopy

    No full text
    International audienceAtomic force microscopy (AFM), which combines a nanometer-scale resolution and a unique capacity to image biomolecular interactions in liquid environment, is a promising tool for the investigation of biological samples. In contrast with nucleic acids and nucleoprotein complexes, for which AFM is now of common use and participates in the recent advances in the knowledge of DNA-related biomolecular processes, AFM investigations of cytoskeleton structures and especially microtubules remain rare. The most critical step to observe biomolecules using AFM is the spreading of the biological material on a flat surface. This issue is now better documented concerning DNA but a lot remains to be done concerning microtubules. This is a prerequisite to further document this issue for a proper and large use of AFM to study cytoskeleton structures. We present here an overview of the various procedures previously used to spread microtubules on a flat surface and advance an easy-to-use and efficient experimental protocol for microtubule imaging by AFM in air. We show application of this protocol to observe intermediate structures of microtubule assembly without using any stabilizing agent and the observation of more complex systems like proteins or messenger ribonucleoprotein particles in interaction with microtubules

    Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA

    No full text
    International audienceThe fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneratio

    Fluvial Archives Group (FLAG) Meeting, Clermont-Ferrand, September 2002. Préface

    No full text
    Pastre Jean François, Antoine Pierre, Bridgland David, Maddy Darrel. Fluvial Archives Group (FLAG) Meeting, Clermont-Ferrand, September 2002. Préface. In: Quaternaire, vol. 15, n°1-2, 2004. Fluvial Archives Group. Clermond-Ferrant 2002. pp. 3-4

    Fluvial Archives Group (FLAG) Meeting, Clermont-Ferrand, September 2002. Préface

    No full text
    Pastre Jean François, Antoine Pierre, Bridgland David, Maddy Darrel. Fluvial Archives Group (FLAG) Meeting, Clermont-Ferrand, September 2002. Préface. In: Quaternaire, vol. 15, n°1-2, 2004. Fluvial Archives Group. Clermond-Ferrant 2002. pp. 3-4

    Rapid Assembly and Collective Behavior of Microtubule Bundles in the Presence of Polyamines

    Get PDF
    International audienceMicrotubules (MTs) are cylindrical cytoskeleton polymers composed of α-β tubulin heterodimers whose dynamic properties are essential to fulfill their numerous cellular functions. In response to spatial confinement, dynamic MTs, even in the absence of protein partners, were shown to self-organize into higher order structures (spindle or striped structures) which lead to interesting dynamical properties (MT oscillations). In this study, we considered the assembly and sensitivity of dynamic MTs when in bundles. To perform this study, spermine, a natural tetravalent polyamine present at high concentrations in all eukaryote cells, was used to trigger MT bundling while preserving MT dynamics. Interestingly, we first show that, near physiological ionic strengths, spermine promotes the bundling of MTs whereas it does not lead to aggregation of free tubulin, which would have been detrimental to MT polymerization. Experimental and theoretical results also indicate that, to obtain a high rate of bundle assembly, bundling should take place at the beginning of assembly when rapid rotational movements of short and newly nucleated MTs are still possible. On the other hand, the bundling process is significantly slowed down for long MTs. Finally, we found that short MT bundles exhibit a higher sensitivity to cold exposure than do isolated MTs. To account for this phenomenon, we suggest that a collective behavior takes place within MT bundles because an MT entering into a phase of shortening could increase the probability of the other MTs in the same bundle to enter into shortening phase due to their close proximity. We then elaborate on some putative applications of our findings to in vivo conditions including neurons
    • …
    corecore