355 research outputs found

    The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.

    Get PDF
    The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions

    Bycatch in a Commercial Lobster Fishery: Effects on Two Benthic Predators, Sea Raven and Longhorn Sculpin

    Get PDF
    Studying the species‐specific responses to fishing capture is critical for effective management and conservation of bycatch species given that acute stress incurred from capture and handling may ultimately lead to mortality. While species of low commercial value are often overlooked, having accurate information on the effects of capture on all species is necessary for ecosystem‐based management. Sea Raven (SR) Hemitripterus americanus and Longhorn Sculpin (LHS) Myoxocephalus octodecemspinosus are routinely captured in the commercial American lobster Homarus americanus fishery in the Gulf of Maine, and they are discarded due to low commercial value. Despite a lack of economic value, these predatory species play important roles in shaping the benthic communities that they inhabit, highlighting the need to study their stress and mortality due to capture and handling. To help understand the effects of the lobster fishery on these species, the current study evaluated the physical, behavioral, and physiological stress responses of SR and LHS to capture in the state of Maine Zone G commercial lobster fishery. Collectively, our results suggest that although these species appeared to be resilient to capture based on an overt injury assessment, stress responses occurred based on reflex impairment and physiological perturbations, and these responses were species‐specific. Given the prevalence of behavioral and physiological stress in this study, further research into the survival outcomes of SR and LHS following release in the commercial lobster fishery is warranted

    Neural connectivity biotypes: associations with internalizing problems throughout adolescence.

    Get PDF
    BackgroundNeurophysiological patterns may distinguish which youth are at risk for the well-documented increase in internalizing symptoms during adolescence. Adolescents with internalizing problems exhibit altered resting-state functional connectivity (RSFC) of brain regions involved in socio-affective processing. Whether connectivity-based biotypes differentiate adolescents' levels of internalizing problems remains unknown.MethodSixty-eight adolescents (37 females) reported on their internalizing problems at ages 14, 16, and 18 years. A resting-state functional neuroimaging scan was collected at age 16. Time-series data of 15 internalizing-relevant brain regions were entered into the Subgroup-Group Iterative Multi-Model Estimation program to identify subgroups based on RSFC maps. Associations between internalizing problems and connectivity-based biotypes were tested with regression analyses.ResultsTwo connectivity-based biotypes were found: a Diffusely-connected biotype (N = 46), with long-range fronto-parietal paths, and a Hyper-connected biotype (N = 22), with paths between subcortical and medial frontal areas (e.g. affective and default-mode network regions). Higher levels of past (age 14) internalizing problems predicted a greater likelihood of belonging to the Hyper-connected biotype at age 16. The Hyper-connected biotype showed higher levels of concurrent problems (age 16) and future (age 18) internalizing problems.ConclusionsDifferential patterns of RSFC among socio-affective brain regions were predicted by earlier internalizing problems and predicted future internalizing problems in adolescence. Measuring connectivity-based biotypes in adolescence may offer insight into which youth face an elevated risk for internalizing disorders during this critical developmental period

    Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure.

    Get PDF
    The purpose of this study was to characterize the effects of diesel exhaust particles (DEP) on thiol regulation in alveolar macrophages (AM) and lymphocytes. We obtained AM and lymph node (thymic and tracheal) cells (LNC) (at different time points) from rats exposed intratracheally to DEP (5 mg/kg) or saline, and measured inflammatory markers, thiol levels, and glutathione reductase (GSH-R) activity. DEP exposure produced significant increases in neutrophils, lactate dehydrogenase, total protein, and albumin content in the lavage fluid. AM from DEP-exposed rats showed a time-dependent increase in intracellular cysteine (CYSH) and GSH. In LNC the intracellular GSH reached peak level by 24 hr, declining toward control levels by 72 hr after exposure. LNC-CYSH and AM-CYSH and GSH were increased at both 24 and 72 hr. Both Sprague-Dawley and Brown Norway rats showed similar trends of responses to DEP exposure as per measurement of the inflammatory markers and thiol changes. AM and, to a lesser degree, LNC were both active in cystine uptake. The DEP exposure stimulated GSH-R activity and increased the conversion of cystine to CYSH in both cell types. The intracellular level of GSH in DEP-exposed AM was moderately increased compared with the saline control, and was further augmented when cells were incubated with cystine. In contrast, the intracellular level of GSH in DEP-exposed LNC was significantly reduced despite the increased CYSH level and GSH-R activity when these cells were cultured for 16 hr. DEP absorbed 23-31% of CYSH, cystine, and GSH, and only 8% of glutathione disulfide when incubated in cell free media. These results indicate that DEP exposure caused lung inflammation and affected thiol levels in both AM and LNC

    Meeting Report: Mode(s) of Action of Asbestos and Related Mineral Fibers

    Get PDF
    Background: Although asbestos in general is well known to cause a range of neoplastic and non-neoplastic human health effects, not all asbestos fiber types have the same disease-causing potential, and the mode of action (MOA) of specific types of asbestos and related fibers for various health outcomes are not well understood

    Contributions of Emotion Regulation and Brain Structure and Function to Adolescent Internalizing Problems and Stress Vulnerability During the COVID-19 Pandemic: A Longitudinal Study

    Get PDF
    Background: Adolescence is a period of increased vulnerability for internalizing problems, particularly following stressful life events. We examined how emotion regulation and brain structure and function were associated with internalizing problems during the COVID-19 pandemic and moderated the association between pandemic-related stressors and internalizing problems. Methods: Data are from a longitudinal sample (N = 145, age range, 10–15 years) strategically assessed at 3 crucial time points: before the COVID-19 pandemic, early during the stay-at-home order period, and again 6 months later. We examined associations of amygdala and hippocampal volume and amygdala activation during an emotional processing task before the pandemic, examined use of emotion regulation strategies before and during the pandemic, and examined pandemic-related stressors with internalizing problems. Results: Greater exposure to pandemic-related stressors was associated with higher internalizing problems both early and later in the COVID-19 pandemic. Youths who reported more frequent use of rumination before the pandemic and higher use of expressive suppression and lower use of cognitive reappraisal early in the pandemic had higher internalizing problems early in the pandemic. Higher left amygdala activation to neutral relative to fearful faces before the pandemic was associated with greater internalizing problems and a stronger link between pandemic-related stressors and internalizing problems early in the pandemic. Conclusions: Stressors related to the COVID-19 pandemic are strongly associated with adolescent internalizing problems, as are individual differences in emotional reactivity and regulation and their underlying neural mechanisms. Interventions that reduce pandemic-related stressors and foster adaptive emotion regulation skills may protect against adolescent psychopathology during this period of heightened exposure to stress

    Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats.

    Get PDF
    Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of Listeria monocytogenes (Listeria) and inhibited the phagocytosis of alveolar macrophages and their response to Listeria in the secretion of interleukin (IL)-1 beta, tumor necrosis factor alpha, and IL-12. In this report we examined the effects of DEPs and/or Listeria on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-gamma. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m3 for 4 hr by nose-only inhalation and inoculated with 100,000 Listeria. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed L. monocytogenes. Listeria infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from Listeria-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-gamma and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding Listeria-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-gamma. In rats exposed to 100 mg/m3 DEPs and Listeria, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the Listeria-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-gamma. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure

    Reprogramming human T cell function and specificity with non-viral genome targeting.

    Get PDF
    Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells

    Induction of Asthma and the Environment: What We Know and Need to Know

    Get PDF
    The prevalence of asthma has increased dramatically over the last 25 years in the United States and in other nations as a result of ill-defined changes in living conditions in modern society. On 18 and 19 October 2004 the U.S. Environmental Protection Agency and the National Institute of Environmental Health Sciences sponsored the workshop “Environmental Influences on the Induction and Incidence of Asthma” to review current scientific evidence with respect to factors that may contribute to the induction of asthma. Participants addressed two broad questions: a) What does the science suggest that regulatory and public health agencies could do now to reduce the incidence of asthma? and b) What research is needed to improve our understanding of the factors that contribute to the induction of asthma and our ability to manage this problem? In this article (one of four articles resulting from the workshop), we briefly characterize asthma and its public health and economic impacts, and intervention strategies that have been successfully used to prevent induction of asthma in the workplace. We conclude with the findings of seven working groups that focus on ambient air, indoor pollutants (biologics), occupational exposures, early life stages, older adults, intrinsic susceptibility, and lifestyle. These groups found strong scientific support for public health efforts to limit in utero and postnatal exposure to cigarette smoke. However, with respect to other potential types of interventions, participants noted many scientific questions, which are summarized in this article. Research to address these questions could have a significant public health and economic impact that would be well worth the investment
    corecore