384 research outputs found

    The 1902–3 eruptions of the Soufrière, St Vincent: Impacts, relief and response

    Get PDF
    Retrospective analysis of the contemporary colonial and scientific records of a major explosive eruption of the Soufrière of St Vincent from 1902 to 1903 reveals how this significant and prolonged event presented challenges to the authorities charged with managing the crisis and its aftermath. In a small-island setting vulnerable to multiple hazards, the spatial footprint of the volcanic hazard and the nature and intensity of the hazard effects were rather different to those of other recurrent hazards such as hurricanes. The eruption affected the same parts of the island that had been impacted by prior explosive eruptions in 1718 and 1812, and hurricanes in 1831 and 1898, with consequences that disproportionately affected those working in and around the large sugar estates. The official response to the eruption, both in terms of short-term relief and remediation, was significantly accelerated by the existence of mature plans for land-reform following the collapse of the sugar market, and ongoing plans for rebuilding in the aftermath of the destructive hurricane of 1898. The picture that this analysis helps to illuminate provides insights both into the nature of the particular eruptive episode, and the human and social response to that episode. This not only informs discussion and planning for future explosive eruptions on St Vincent, but provides important empirical evidence for building effective responses in similar multihazard context

    Volcanogenic Pseudo-Fossils From the ~3.48 Ga Dresser Formation, Pilbara, Western Australia

    Get PDF
    The ~ 3.48 billion-year-old Dresser Formation, Pilbara Craton, Western Australia, is a key geological unit for the study of Earth\u27s earliest life and the habitats it occupied. Here, we describe a new suite of spheroidal to lenticular microstructures that morphologically resemble some previously reported Archean microfossils. Correlative microscopy shows that these objects have a size distribution, wall ultrastructure, and chemistry that are incompatible with a microfossil origin and instead are interpreted as pyritized and silicified fragments of vesicular volcanic glass. Organic kerogenous material is associated with much of the altered volcanic glass; variable quantities of organic carbon line or fill the insides of some individual vesicles, while relatively large, tufted organic-rich laminae envelop multiple vesicles. The microstructures reported herein constitute a new type of abiogenic artifact (pseudo-fossil) that must be considered when evaluating potential signs of early life on Earth or elsewhere. In the sample studied here, where hundreds of these microstructures are present, the combined evidence permits a relatively straightforward interpretation as vesicular volcanic glass. However, reworked, isolated, and silicified microstructures of this type may prove particularly problematic in early or extraterrestrial life studies since they adsorb carbon onto their surfaces and are readily pyritized, mimicking a common preservation mechanism for bona fide microfossils. In those cases, nanoscale analysis of wall ultrastructure would be required to firmly exclude a biological origin

    The eruptive history and magmatic evolution of Aluto volcano: new insights into silicic peralkaline volcanism in the Ethiopian rift

    Get PDF
    The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a ~ 42 km2 collapse structure. After a hiatus of ~ 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1–100 × 106 m3

    Names are key to the big new biology

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Trends in Ecology & Evolution 25 (2010): 686-691, doi:10.1016/j.tree.2010.09.004.Those who seek answers to big, broad questions about biology, especially questions emphasizing the organism (taxonomy, evolution, ecology), will soon benefit from an emerging names-based infrastructure. It will draw on the almost universal association of organism names with biological information to index and interconnect information distributed across the Internet. The result will be a virtual data commons, expanding as further data are shared, allowing biology to become more of a “big science”. Informatics devices will exploit this ‘big new biology’, revitalizing comparative biology with a broad perspective to reveal previously inaccessible trends and discontinuities, so helping us to reveal unfamiliar biological truths. Here, we review the first components of this freely available, participatory, and semantic Global Names Architecture.DJP thanks the NSF for support through the Data Conservancy project and the Alfred P. Sloan and John D. and Catherine T. MacArthur foundations for their support

    Structural controls on fluid pathways in an active rift system : a case study of the Aluto volcanic complex

    Get PDF
    Hutchison was funded by NERC studentship NE/J5000045/1.In volcanically and seismically active rift systems, preexisting faults may control the rise and eruption of magma, and direct the flow of hydrothermal fluids and gas in the subsurface. Using high-resolution airborne imagery, field observations, and CO2 degassing data on Aluto, a typical young silicic volcano in the Main Ethiopian Rift, we explore how preexisting tectonic and volcanic structures control fluid pathways and spatial patterns of volcanism, hydrothermal alteration and degassing. A new light detection and ranging (lidar) digital elevation model and evidence from deep geothermal wells show that the Aluto volcanic complex is dissected by rift-related extensional faults with throws of 50-100 m. Mapping of volcanic vent distributions reveals a structural control by either rift-aligned faults or an elliptical caldera ring fracture. Soil-gas CO2 degassing surveys show elevated fluxes (>>100 g m-2 d-1) along major faults and volcanic structures, but significant variations in CO2 flux along the fault zones reflect differences in near-surface permeability caused by changes in topography and surface lithology. The CO2 emission from an active geothermal area adjacent to the major fault scarp of Aluto amounted to similar to 60 t d-1; we estimate the total CO2 emission from Aluto to be 250-500 t d-1. Preexisting volcanic and tectonic structures have played a key role in the development of the Aluto volcanic complex and continue to facilitate the expulsion of gases and geothermal fluids. This case study emphasizes the importance of structural mapping on active rift volcanoes to understand the geothermal field as well as potential volcanic hazards.Publisher PDFPeer reviewe

    A Global Health Partnership's Use of Time-Limited Support to Catalyze Health Practice Change: The Case of GAVI's Injection Safety Support

    Get PDF
    This paper presents the findings of a study to assess the effectiveness and sustainability of a GAVI (Global Alliance of Vaccines and Immunization) sponsored, time-limited Injection Safety (INS) support. The support came in two forms: 1) in-kind, in the form of AD syringes and safety boxes, and 2) in cash, for those countries that already had a secure, multi-year source of AD syringes and safety boxes, but proposed to use INS support to strengthen their injection safety activities. In total, GAVI gave INS support for a three-year period to 58 countries: 46 with commodities and 12 with cash support. To identify variables that might be associated with financial sustainability, frequencies and cross-tabulations were run against various programmatic and socio-economic variables in the 58 countries. All but two of the 46 commodity-recipient countries were able to replace and sustain the use of AD syringes and safety boxes after the end of their GAVI INS support despite the fact that standard disposable syringes are less costly than ADs (10–15 percent differential). In addition, all 12 cash-recipient countries continued to use AD syringes and safety boxes in their immunization programs in the years following GAVI INS assistance. At the same time, countries were often not prepared for the increased waste management requirements associated with the use of the syringes, suggesting the importance of anticipating challenges with the introduction of new technologies. The sustained use of AD syringes in countries receiving injection safety support from GAVI, in a majority of cases through government financing, following the completion of three years of time-limited support, represents an early indication of how GHPs can contribute to improved health outcomes in immunization safety in the world's poorest countries in a sustainable way

    Synchronisation of sedimentary records using tephra : a postglacial tephrochronological model for the Chilean Lake District

    Get PDF
    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42 degrees S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude >= 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordon Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaiten volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial

    Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels

    Get PDF
    Understanding arc magma genesis is critical to deciphering the construction of continental crust, understanding the relationship between plutonic and volcanic rocks, and for assessing volcanic hazards. Arc magma genesis is complex. Interpreting the underlying causes of major and trace element diversity in erupted magmas is challenging and often non-unique. To navigate this complexity mafic magma diversity is investigated using sample suites that span short temporal and spatial scales. These constraints allow us to evaluate models of arc magma genesis and their geochemical implications based on physical arguments and recent model results. Young volcanic deposits (≲18 kyr) are analysed from the Southern Volcanic Zone (SVZ), Chile, in particular suites of scoria cones on the flanks of arc stratovolcanoes that have erupted relatively primitive magmas of diverse compositions. Our study is centred on the high-resolution post-glacial tephrochronological record for Mocho-Choshuenco volcano where tight age constraints and a high density of scoria cones provide a spatially well-resolved mafic magma dataset. Two compositional trends emerge from the data. Firstly, magmas from cones on the flanks of the main edifice become more mafic with distance from the central vent. This is attributed to fractional crystallisation processes within the crust, with distal cones sampling less differentiated magmas. Secondly, there is a set of cones with distinct major and trace element compositions that are more primitive but enriched in incompatible elements relative to the central system and other ‘normal SVZ’ magmas. This distinct signature – termed the ‘Kangechi’ signature – is observed at three further clusters of cones within the SVZ. This is attributed to greater preservation of the enriched melt signature arising from reactive melt transport within the mantle wedge. Our model has important implications for arc magma genesis in general, and in particular for the spatial and temporal scales over which compositional variations are preserved in erupted magmas

    A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent

    Get PDF
    Satellite instruments play a valuable role in detecting, monitoring and characterising emissions of ash and gas into the atmosphere during volcanic eruptions. This study uses two satellite instruments, the Infrared Atmospheric Sounding Interferometer (IASI) and the Advanced Baseline Imager (ABI), to examine the plumes of ash and sulfur dioxide (SO2) from the April 2021 eruption of La Soufrière, St Vincent. The frequent ABI data have been used to construct a 14 d chronology of a series of explosive events at La Soufrière, which is then complemented by measurements of SO2 from IASI, which is able to track the plume as it is transported around the globe. A minimum of 35 eruptive events were identified using true, false and brightness temperature difference maps produced with the ABI data. The high temporal resolution images were used to identify the approximate start and end times, as well as the duration and characteristics of each event. From this analysis, four distinct phases within the 14 d eruption have been defined, each consisting of multiple explosive events with similar characteristics: (1) an initial explosive event, (2) a sustained event lasting over 9 h, (3) a pulsatory phase with 25 explosive events in a 65.3 h period and (4) a waning sequence of explosive events. It is likely that the multiple explosive events during the April 2021 eruption contributed to the highly complex plume structure that can be seen in the IASI measurements of the SO2 column amounts and heights. The bulk of the SO2 from the first three phases of the eruption was transported eastwards, which based on the wind direction at the volcano implies that the SO2 was largely in the upper troposphere. Some of the SO2 was carried to the south and west of the volcano, suggesting a smaller emission of the gas into the stratosphere, there being a shift in wind direction around the height of the tropopause. The retrieved SO2 heights show that the plume had multiple layers but was largely concentrated between 13 and 19 km, with the majority of the SO2 being located in the upper troposphere and around the height of the tropopause, with some emission into the stratosphere. An average e-folding time of 6.07±4.74 d was computed based on the IASI SO2 results: similar to other tropical eruptions of this magnitude and height. The SO2 was trackable for several weeks after the eruption and is shown to have circulated the globe, with parts of it reaching as far as 45∘ S and 45∘ N. Using the IASI SO2 measurements, a time series of the total SO2 mass loading was produced, with this peaking on 13 April (descending orbits) at 0.31±0.09 Tg. Converting these mass values to a temporally varying SO2 flux demonstrated that the greatest emission occurred on 10 April with that measurement incorporating SO2 from the second phase of the eruption (sustained emission) and the beginning of the pulsatory phase. The SO2 flux is then shown to fall during the later stages of the eruption: suggesting a reduction in eruptive energy, something also reflected in ash height estimates obtained with the ABI instrument. A total SO2 emission of 0.63±0.5 Tg of SO2 has been derived, although due to limitations associated with the retrieval, particularly in the first few days after the eruption began, this, the retrieved column amounts and the total SO2 mass on each day should be considered minimum estimates. There are a number of similarities between the 1979 and 2021 eruptions at La Soufrière, with both eruptions consisting of a series of explosive events with varied heights and including some emission into the stratosphere. These similarities highlight the importance of in-depth investigations into eruptions and the valuable contribution of satellite data for this purpose; as these studies aid in learning about a volcano's behaviour, which may allow for better preparation for future eruptive activity

    Mixing and crystal scavenging in the Main Ethiopian Rift revealed by trace element systematics in feldspars and glasses

    Get PDF
    For many magmatic systems, crystal compositions preserve a complex and protracted history which may be largely decoupled from their carrier melts. The crystal cargo may hold clues to the physical distribution of melt and crystals in a magma reservoir and how magmas are assembled prior to eruptions. Here we present a geochemical study of a suite of samples from three peralkaline volcanoes in the Main Ethiopian Rift. Whilst whole-rock data shows strong fractional crystallisation signatures, the trace element systematics of feldspars, and their relationship to their host glasses, reveals complexity. Alkali feldspars, particularly those erupted during caldera forming episodes, have variable Ba concentrations, extending to high values that are not in equilibrium with the carrier liquids. Some of the feldspars are antecrysts, which we suggest are scavenged from a crystal-rich mush. The antecrysts crystallised from a Ba-enriched (more primitive) melt, before later entrainment into a Ba-depleted residual liquid. Crystal-melt segregation can occur on fast timescales in these magma reservoirs, owing to the low viscosity nature of peralkaline liquids. The separation of enough residual melt to feed a crystal-poor post caldera rhyolitic eruption may take as little as months to tens of years (much shorter than typical repose periods of 300-400 years). Our observations are consistent with these magmatic systems spending significant portions of their life cycle dominated by crystalline mushes containing ephemeral, small (< 1 km3) segregations of melt. This interpretation helps to reconcile observations of high crustal electrical resistivity beneath Aluto, despite seismicity and ground deformation consistent with a magma body.This project is funded by the Natural Environment Research Council grant NE/L013932/1 (RiftVolc)
    corecore