21,256 research outputs found

    Structure of a rare non-standard sequence k-turn bound by L7Ae protein

    Get PDF
    Kt-23 from Thelohania solenopsae is a rare RNA kink turn (k-turn) where an adenine replaces the normal guanine at the 2n position. L7Ae is a member of a strongly conserved family of proteins that bind a range of k-turn structures in the ribosome, box C/D and H/ACA small nucleolar RNAs and U4 small nuclear RNA. We have solved the crystal structure of T. solenopsae Kt-23 RNA bound to Archeoglobus fulgidus L7Ae protein at a resolution of 2.95 Γ…. The protein binds in the major groove displayed on the outer face of the k-turn, in a manner similar to complexes with standard k-turn structures. The k-turn adopts a standard N3 class conformation, with a single hydrogen bond from A2b N6 to A2n N3. This contrasts with the structure of the same sequence located in the SAM-I riboswitch, where it adopts an N1 structure, showing the inherent plasticity of k-turn structure. This potentially can affect any tertiary interactions in which the RNA participates

    The k-junction motif in RNA structure

    Get PDF
    The k-junction is a structural motif in RNA comprising a three-way helical junction based upon kink turn (k-turn) architecture. A computer program written to examine relative helical orientation identified the three-way junction of the Arabidopsis TPP riboswitch as an elaborated k-turn. The Escherichia coli TPP riboswitch contains a related k-junction, and analysis of >11 000 sequences shows that the structure is common to these riboswitches. The k-junction exhibits all the key features of an N1-class k-turn, including the standard cross-strand hydrogen bonds. The third helix of the junction is coaxially aligned with the C (canonical) helix, while the k-turn loop forms the turn into the NC (non-canonical) helix. Analysis of ligand binding by ITC and global folding by gel electrophoresis demonstrates the importance of the k-turn nucleotides. Clearly the basic elements of k-turn structure are structurally well suited to generate a three-way helical junction, retaining all the key features and interactions of the k-turn

    Hard x-ray polarimetry with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    Although designed primarily as a hard X-ray imager and spectrometer, the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is also capable of measuring the polarization of hard X-rays (20-100 keV) from solar flares. This capability arises from the inclusion of a small unobstructed Be scattering element that is strategically located within the cryostat that houses the array of nine germanium detectors. The Ge detectors are segmented, with both a front and rear active volume. Low energy photons (below about 100 keV) can reach a rear segment of a Ge detector only indirectly, by scattering. Low energy photons from the Sun have a direct path to the Be and have a high probability of Compton scattering into a rear segment of a Ge detector. The azimuthal distribution of these scattered photons carries with it a signature of the linear polarization of the incident flux. Sensitivity estimates, based on simulations and in-flight background measurements, indicate that a 20-100 keV polarization sensitivity of less than a few percent can be achieved for X-class flares

    A note on the power divergence in lattice calculations of Ξ”I=1/2\Delta I = 1/2 K→ππK\to\pi\pi amplitudes at MK=MΟ€M_{K}=M_{\pi}

    Get PDF
    In this note, we clarify a point concerning the power divergence in lattice calculations of Ξ”I=1/2\Delta I = 1/2 K→ππK\to\pi\pi decay amplitudes. There have been worries that this divergence might show up in the Minkowski amplitudes at MK=MΟ€M_{K}=M_{\pi} with all the mesons at rest. Here we demonstrate, via an explicit calculation in leading-order Chiral Perturbation Theory, that the power divergence is absent at the above kinematic point, as predicted by CPS symmetry.Comment: 5 pages, 2 figure
    • …
    corecore