42 research outputs found

    Cytokines and Inflammatory Mediators [30-39]: 30. The LPS Stimulated Production of Interleukin-10 is not Associated with -819C/T and -592C/A Promoter Polymorphisms in Healthy Indian Subjects

    Get PDF
    Background: Interleukin-10 is a pivotal immunoregulatory cytokine with pleiotropic effects on the immune system. IL-10 promoter polymorphisms have been associated with disease susceptibility and the ability to secrete IL-10 in vitro. We suspected that the association of the widely studied -819C/T and -592C/A polymorphisms with the IL-10 production might vary between ethnic groups. Therefore, we examined the association of -819 C/T and -592 C/A promoter polymorphisms with in vitro LPS stimulated secretion of IL-10 in normal healthy Indian volunteers. Methods: Peripheral blood was collected from 103 healthy volunteers and diluted whole blood cultures were set up with 100 ng/ml of LPS as stimulant: supernatant was collected at 24 h and IL-10 levels were assayed by ELISA. Genotyping was done for -819C/T polymorphism in 101 individuals and -592C/A polymorphism in 68 individuals by polymerase chain reaction followed by RFLP. The differences in IL-10 production between the genotypes were analysed by ANOVA. Results: There were 30, 47 and 24 individuals with the CC, CT and TT genotypes with a minor allele (T) frequency of 47% for the -819C/T polymorphism. The CC and TT genotypes at position -819 were strongly associated with CC and AA genotypes at -592 position suggestive of strong linkage disequilibrium. There was no association between the -819 genotype and the in vitro LPS stimulated IL-10 levels. Conclusions: The -819C/T and the -592 C/A polymorphisms of the IL-10 promoter region are not significantly associated with LPS stimulated IL-10 production healthy Indian subjects. Disclosure statement: All authors have declared no conflicts of interes

    Linking Power Doppler Ultrasound to the Presence of Th17 Cells in the Rheumatoid Arthritis Joint

    Get PDF
    Power Doppler ultrasound (PDUS) is increasingly used to assess synovitis in Rheumatoid Arthritis (RA). Prior studies have shown correlations between PDUS scores and vessel counts, but relationships with T cell immunopathology have not been described.PBMC were isolated from healthy controls (HC) or RA patients and stimulated ex vivo with PMA and ionomycin for 3 hours in the presence of Golgistop. Paired synovial fluid (SF) or synovial tissue (ST) were analysed where available. Intracellular expression of IL-17, IFNgamma, and TNFalpha by CD4+ T cells was determined by flow cytometry. Synovial blood flow was evaluated by PDUS signal at the knees, wrists and metacarpophalangeal joints of RA patients. Serum, SF and fibroblast culture supernatant levels of vascular endothelial growth factor-A (VEGF-A) were measured by ELISA. The frequency of IL17+IFNgamma-CD4+ T cells (Th17 cells) was significantly elevated in peripheral blood (PB) from RA patients vs. HC (median (IQR) 0.5 (0.28-1.59)% vs. 0.32 (0.21-0.54)%, p = 0.005). Th17 cells were further enriched (mean 6.6-fold increase) in RA SF relative to RA PB. Patients with active disease had a higher percentage of IL-17+ T cells in ST than patients in remission, suggesting a possible role for Th17 cells in active synovitis in RA. Indeed, the percentage of Th17 cells, but not Th1, in SF positively correlated with CRP (r = 0.51, p = 0.04) and local PDUS-defined synovitis (r = 0.61, p = 0.002). Furthermore, patients with high levels of IL-17+CD4+ T cells in SF had increased levels of the angiogenic factor VEGF-A in SF. Finally, IL-17, but not IFNgamma, increased VEGF-A production by RA synovial fibroblasts in vitro.Our data demonstrate a link between the presence of pro-inflammatory Th17 cells in SF and local PDUS scores, and offer a novel immunological explanation for the observation that rapid joint damage progression occurs in patients with persistent positive PDUS signal

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    Get PDF
    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell- based adaptive immunity

    Spin Exchange Monitoring of the Strong Positive Homotropic Allosteric Binding of a Tetraradical by a Synthetic Receptor in Water

    Full text link

    Estradiol induces allosteric coupling and partitioning of sex-hormone-binding globulin monomers among conformational states

    No full text
    Summary: Sex-hormone-binding globulin (SHBG) regulates the transport and bioavailability of estradiol. The dynamics of estradiol's binding to SHBG are incompletely understood, although it is believed that estradiol binds to each monomer of SHBG dimer with identical affinity (Kd ∼2 nM). Contrary to the prevalent view, we show that estradiol's binding to SHBG is nonlinear, and the ''apparent'' Kd changes with varying estradiol and SHBG concentrations. Estradiol's binding to each SHBG monomer influences residues in the ligand-binding pocket of both monomers and differentially alters the conformational and energy landscapes of both monomers. Monomers are not energetically or conformationally equivalent even in fully bound state.Estradiol's binding to SHBG involves bidirectional, inter-monomeric allostery that changes the distribution of both monomers among various energy and conformational states. Inter-monomeric allostery offers a mechanism to extend the binding range of SHBG and regulate hormone bioavailability as estradiol concentrations vary widely during life

    Sonographic evaluation of intravascular volume status: Can internal jugular or femoral vein collapsibility be used in the absence of IVC visualization?

    No full text
    Introduction: Inferior vena cava collapsibility index (IVC-CI) has been shown to correlate with both clinical and invasive assessment of intravascular volume status, but has important limitations such as the requirement for advanced sonographic skills, the degree of difficulty in obtaining those skills, and often challenging visualization of the IVC in the postoperative patient. The current study aims to explore the potential for using femoral (FV) or internal jugular (IJV) vein collapsibility as alternative sonographic options in the absence of adequate IVC visualization. Methods: A prospective, observational study comparing IVC-CI and Fem- and/or IJV-CI was performed in two intensive care units (ICU) between January 2012 and April 2014. Concurrent M-mode measurements of IVC-CI and FV- and/or IJV-CI were collected during each sonographic session. Measurements of IVC were obtained using standard technique. IJV-CI and FV-CI were measured using high-frequency, linear array ultrasound probe placed in the corresponding anatomic areas. Paired data were analyzed using coefficient of correlation/determination and Bland-Altman determination of measurement bias. Results: We performed paired ultrasound examination of IVC-IJV (n = 39) and IVC-FV (n = 22), in 40 patients (mean age 54.1; 40% women). Both FV-CI and IJV-CI scans took less time to complete than IVC-CI scans (both, P < 0.02). Correlations between IVC-CI/FV-CI (R 2 = 0.41) and IVC-CI/IJV-CI (R 2 = 0.38) were weak. There was a mean -3.5% measurement bias between IVC-CI and IJV-CI, with trend toward overestimation for IJV-CI with increasing collapsibility. In contrast, FV-CI underestimated collapsibility by approximately 3.8% across the measured collapsibility range. Conclusion: Despite small measurement biases, correlations between IVC-CI and FV-/IJV-CI are weak. These results indicate that IJ-CI and FV-CI should not be used as a primary intravascular volume assessment tool for clinical decision support in the ICU. The authors propose that IJV-CI and FV-CI be reserved for clinical scenarios where sonographic acquisition of both IVC-CI or subclavian collapsibility are not feasible, especially when trended over time. Sonographers should be aware that IJV-CI tends to overestimate collapsibility when compared to IVC-CI, and FV-CI tends to underestimates collapsibility relative to IVC-CI
    corecore