83 research outputs found

    Remarkable similarity in timing of absorptive fine-root production across 11 diverse temperate tree species in a common garden

    Get PDF
    Long-term minirhizotron observations of absorptive fine roots provide insights into seasonal patterns of belowground root production and carbon dynamics. Our objective was to compare root dynamics over time across mature individuals of 11 temperate trees species: five evergreen and six deciduous. We analyzed the timing and growth on 1st-and 2nd-order roots in minirhizotron images down to a vertical depth of 35 cm, as well as monthly and total annual length production. Production patterns were related to total annual precipitation of the actual and previous year of root production over 6 years. The main or largest peak of annual fine-root production occurred between June and September for almost all species and years. In most years, when peaks occurred, the timing of peak root production was synchronized across all species. A linear mixed model revealed significant differences in monthly fine-root length production across species in certain years (species x year, P < 0.0001), which was strongly influenced by three tree species. Total annual root production was much higher in 2000–2002, when there was above-average rainfall in the previous year, compared with production in 2005–2007, which followed years of lower-than-average rainfall (2003–2006). Compared to the wetter period all species experienced a decline of at least 75% in annual production in the drier years. Total annual root length production was more strongly associated with previous year’s (P < 0.001) compared with the actual year’s precipitation (P = 0.003). Remarkably similar timing of monthly absorptive fine-root growth can occur across multiple species of diverse phylogeny and leaf habit in a given year, suggesting a strong influence of extrinsic factors on absorptive fine-root growth. The influence of previous year precipitation on annual absorptive fine-root growth underscores the importance of legacy effects in biological responses and suggests that a growth response of temperate trees to extreme precipitation or drought events can be exacerbated across years

    Phylogenetic Signal, Root Morphology, Mycorrhizal Type, and Macroinvertebrate Exclusion: Exploring Wood Decomposition in Soils Conditioned by 13 Temperate Tree Species

    Get PDF
    Woodlands are pivotal to carbon stocks, but the process of cycling C is slow and may be most effective in the biodiverse root zone. How the root zone impacts plants has been widely examined over the past few decades, but the role of the root zone in decomposition is understudied. Here, we examined how mycorrhizal association and macroinvertebrate activity influences wood decomposition across diverse tree species. Within the root zone of six predominantly arbuscular mycorrhizal (AM) (Acer negundo, Acer saccharum, Prunus serotina, Juglans nigra, Sassafras albidum, and Liriodendron tulipfera) and seven predominantly ectomycorrhizal (EM) tree species (Carya glabra, Quercus alba, Quercus rubra, Betula alleghaniensis, Picea rubens, Pinus virginiana, and Pinus strobus), woody litter was buried for 13 months. Macroinvertebrate access to woody substrate was either prevented or not using 0.22 mm mesh in a common garden site in central Pennsylvania. Decomposition was assessed as proportionate mass loss, as explained by root diameter, phylogenetic signal, mycorrhizal type, canopy tree trait, or macroinvertebrate exclusion. Macroinvertebrate exclusion significantly increased wood decomposition by 5.9%, while mycorrhizal type did not affect wood decomposition, nor did canopy traits (i.e., broad leaves versus pine needles). Interestingly, there was a phylogenetic signal for wood decomposition. Local indicators for phylogenetic associations (LIPA) determined high values of sensitivity value in Pinus and Picea genera, while Carya, Juglans, Betula, and Prunus yielded low values of sensitivity. Phylogenetic signals went undetected for tree root morphology. Despite this, roots greater than 0.35 mm significantly increased woody litter decomposition by 8%. In conclusion, the findings of this study suggest trees with larger root diameters can accelerate C cycling, as can trees associated with certain phylogenetic clades. In addition, root zone macroinvertebrates can potentially limit woody C cycling, while mycorrhizal type does not play a significant role

    Seasonal Timing of Root Growth in Favorable Microsites

    No full text
    The heterogeneous nature of soil is well known. Over short distances, a soil may vary considerably in nutrient and water availability, physical impedance, toxic ion concentration, and other factors that affect plant growth and function. Proliferation of roots in small volumes of soil with favorable chemical and physical characteristics has been shown (Fitter and Hay 1981, St. John et al. 1983, Wang et al. 1986). Such responses are generally considered to be mechanisms by which plants more efficiently exploit the soil environment (e.g., St. John et al. 1983). In this field study, we compare rates and spatial patterns of root growth in favorable microsites by two Agropyron species and a common shrub codominant Artemisia tridentata ssp. vaseyana (Rydb.) Beetle. These two Agropyron tussock grasses differ strikingly in their ability to compete with A. tridentata (Eissenstat and Caldwell 1988). The grass of greater competitive ability, Agropyron desertorum (Fisch. ex Link) Schult., was introduced from Eurasia and has been widely planted in the Great Basin steppe of North America. Agropyron spicatum (Pursh) Scribn. and Smith and A. tridentata are native. (A recent revision of the perennial North American Triticeae [Barkworth and Dewey 1985] recommends that the name Agropyron spicatum be changed to Pseudoroegneria spicata [Pursh] A. Love subsp. spicata.

    Regional scale patterns of fine root lifespan and turnover under current and future climate

    Get PDF
    Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics make it difficult to define and predict patterns of root dynamics across broad spatial scales. Here, we combine species-specific estimates of fine root dynamics with a model that predicts current distribution and future suitable habitat of temperate tree species across the eastern United States (US). Estimates of fine root lifespan and turnover are based on empirical observations and relationships with fine root and whole-plant traits and apply explicitly to the fine root pool that is relatively short-lived and most active in nutrient and water uptake. Results from the combined model identified patterns of faster root turnover rates in the North Central US and slower turnover rates in the Southeastern US. Portions of Minnesota, Ohio, and Pennsylvania were also predicted to experience \u3e10% increases in root turnover rates given potential shifts in tree species composition under future climate scenarios while root turnover rates in other portions of the eastern US were predicted to decrease. Despite potential regional changes, the average estimates of root lifespan and turnover for the entire study area remained relatively stable between the current and future climate scenarios. Our combined model provides the first empirically based, spatially explicit, and spatially extensive estimates of fine root lifespan and turnover and is a potentially powerful tool allowing researchers to identify reasonable approximations of forest fine root turnover in areas where no direct observations are available. Future efforts should focus on reducing uncertainty in estimates of root dynamics by better understanding how climate and soil factors drive variability in root dynamics of different species

    Fifteen Years of Vine Root Growth Studies in Concords

    Full text link
    Using a miniature camera lowered into the root zone, Cornell physiologist Alan Lakso and Penn State root biologist David Eissenstat tracked seasonal growth of fine Concord roots over several growing seasons. Here is a summary of what they found

    On the sensitivity of root and leaf phenology to warming in the Arctic

    No full text
    Temperature is commonly assumed to act as the primary constraint on the timing of plant growth, and strong advances in plant phenology have been seen with recent atmospheric warming. The influence of temperature on the timing of root growth, however, is less clear, and controls on root phenology are not well understood. The influence of temperature on above- and belowground phenology is particularly important in the Arctic, where most plant biomass is belowground and warming is occurring at a higher rate than in other ecosystems. We examined the influence of experimental warming on graminoid and shrub communities in the Arctic in southern west Greenland. We found that warming since 2012 did not advance the timing of aboveground seasonal dynamics during two years or belowground seasonal dynamics during three years. We suggest that growing-season temperature may no longer be the primary constraint on plant phenology at this site, and plant phenological responses to future warming at the site may consequently be weaker

    Data from: Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests

    No full text
    1. Plants compete for nutrients using a range of strategies. We investigated nutrient foraging within nutrient hot-spots simultaneously available to plant species with diverse root traits. We hypothesized that there would be more root proliferation by thin-root species than by thick-root species, and that root proliferation by thin-root species would limit root proliferation by thick-root species. 2. We conducted a root ingrowth experiment in a temperate forest in eastern USA where root systems of different tree species could interact. Tree species varied in the thickness of their absorptive roots, and were associated with either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM) fungi. Thus, there were thin- and thick-root AM and thin- and thick-root EM plant functional groups. Half the ingrowth cores were amended with organic nutrients (dried green leaves). Relative root length abundance, the proportion of total root length in a given soil volume occupied by a particular plant functional group, was calculated for the original root population and ingrowth roots after 6 months. 3. The shift in relative root length abundance from original to ingrowth roots was positive in thin-root species but negative in thick-root species (P < 0.001), especially in unamended patches (AM: +6% vs. -7%; EM: +8% vs. -9%). Being thin-rooted may thus allow a species to more rapidly recolonize soil after a disturbance, which may influence competition for nutrients. Moreover, we observed that nutrient additions amplified the shift in root length abundance of thin over thick roots in AM trees (+13% vs. -14%), but not in EM trees (+1% vs -3%). In contrast, phospholipid fatty acid biomarkers suggested that EM fungal hyphae strongly proliferated in nutrient hot-spots whereas AM fungal hyphae exhibited only modest proliferation. 4. We found no evidence that when growing in the shared patch, the proliferation of thin roots inhibited the growth of thick roots. 5. Synthesis. Knowledge of root morphology and mycorrhizal type of co-existing tree species may improve prediction of patch exploitation and nutrient acquisition in heterogeneous soils
    • …
    corecore