4,753 research outputs found

    The empirical accuracy of uncertain inference models

    Get PDF
    Uncertainty is a pervasive feature of the domains in which expert systems are designed to function. Research design to test uncertain inference methods for accuracy and robustness, in accordance with standard engineering practice is reviewed. Several studies were conducted to assess how well various methods perform on problems constructed so that correct answers are known, and to find out what underlying features of a problem cause strong or weak performance. For each method studied, situations were identified in which performance deteriorates dramatically. Over a broad range of problems, some well known methods do only about as well as a simple linear regression model, and often much worse than a simple independence probability model. The results indicate that some commercially available expert system shells should be used with caution, because the uncertain inference models that they implement can yield rather inaccurate results

    Optimal estimates of the diffusion coefficient of a single Brownian trajectory

    Get PDF
    Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way of extracting diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least squares estimate. Furthermore we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.Comment: 8 pages, 5 figure

    Social Organization of the Eastern Rock Elephant-Shrew (\u3cem\u3eElephantulus myurus\u3c/em\u3e): The Evidence for Mate Guarding

    Get PDF
    Understanding the costs and benefits of defending solitary females, or mate guarding, may be the key to understanding the evolution of monogamy in most mammals. Elephant-shrews, or sengis, are a unique clade of small mammals that are particularly attractive for studies of mate guarding. We studied the spatial organization of Eastern Rock Sengis (Elephantulus myurus) in KwaZulu-Natal, South Africa, from August – December 2000. Our objectives were to describe the home ranges of males and females using radiotelemetry, noting the sizes and overlap of adjacent ranges and how the spatial organization changes through time. Males and females were spatially associated in monogamous pairs despite the fact that males contributed no obvious direct care to offspring. These monogamous associations persisted despite the fact that some males had home ranges large enough to encompass multiple females. Males also had more variable ranges, perhaps because they spent more time at the periphery of their ranges exploring for the presence of additional females. There was likely competition for females, as range shifts were observed when male territory holders died or disappeared. It seems likely that this species is a model study organism to investigate the costs and benefits of mate guarding

    An Upper Limit on the Reflected Light from the Planet Orbiting the Star tau Bootis

    Get PDF
    The planet orbiting tau Boo at a separation of 0.046 AU could produce a reflected light flux as bright as 1e-4 relative to that of the star. A spectrum of the system will contain a reflected light component which varies in amplitude and Doppler-shift as the planet orbits the star. Assuming the secondary spectrum is primarily the reflected stellar spectrum, we can limit the relative reflected light flux to be less than 5e-5. This implies an upper limit of 0.3 for the planetary geometric albedo near 480 nm, assuming a planetary radius of 1.2 R_Jup. This albedo is significantly less than that of any of the giant planets of the solar system, and is not consistent with certain published theoretical predictions.Comment: 5 pages, 1 figure, accepted by ApJ Letter

    Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    Full text link
    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    Performance of a deterministic source of entangled photonic qubits

    Get PDF
    We study the possible limitations and sources of decoherence in the scheme for the deterministic generation of polarization-entangled photons, recently proposed by Gheri et al. [K. M. Gheri et al., Phys. Rev. A 58, R2627 (1998)], based on an appropriately driven single atom trapped within an optical cavity. We consider in particular the effects of laser intensity fluctuations, photon losses, and atomic motion.Comment: 10 pages, 6 figure
    • …
    corecore