283 research outputs found

    Warming and Crop Production in the US and Beyond

    Get PDF
    This presentation will discuss what we currently know about how crops respond to warming, where the biggest impacts over the next few decades might be, and what we can do to adapt.Title VI National Resource Center Grant (P015A060066)unpublishednot peer reviewe

    Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping

    Full text link
    The lack of reliable data in developing countries is a major obstacle to sustainable development, food security, and disaster relief. Poverty data, for example, is typically scarce, sparse in coverage, and labor-intensive to obtain. Remote sensing data such as high-resolution satellite imagery, on the other hand, is becoming increasingly available and inexpensive. Unfortunately, such data is highly unstructured and currently no techniques exist to automatically extract useful insights to inform policy decisions and help direct humanitarian efforts. We propose a novel machine learning approach to extract large-scale socioeconomic indicators from high-resolution satellite imagery. The main challenge is that training data is very scarce, making it difficult to apply modern techniques such as Convolutional Neural Networks (CNN). We therefore propose a transfer learning approach where nighttime light intensities are used as a data-rich proxy. We train a fully convolutional CNN model to predict nighttime lights from daytime imagery, simultaneously learning features that are useful for poverty prediction. The model learns filters identifying different terrains and man-made structures, including roads, buildings, and farmlands, without any supervision beyond nighttime lights. We demonstrate that these learned features are highly informative for poverty mapping, even approaching the predictive performance of survey data collected in the field.Comment: In Proc. 30th AAAI Conference on Artificial Intelligenc

    Global scale climate–crop yield relationships and the impacts of recent warming

    Get PDF
    Changes in the global production of major crops are important drivers of food prices, food security and land use decisions. Average global yields for these commodities are determined by the performance of crops in millions of fields distributed across a range of management, soil and climate regimes. Despite the complexity of global food supply, here we show that simple measures of growing season temperatures and precipitation—spatial averages based on the locations of each crop—explain ∼30% or more of year-to-year variations in global average yields for the world’s six most widely grown crops. For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002. While these impacts are small relative to the technological yield gains over the same period, the results demonstrate already occurring negative impacts of climate trends on crop yields at the global scale

    Tile2Vec: Unsupervised representation learning for spatially distributed data

    Full text link
    Geospatial analysis lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language -- words appearing in similar contexts tend to have similar meanings -- to spatially distributed data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and, similar to word vectors, visual analogies can be obtained via simple arithmetic in the latent space.Comment: 8 pages, 4 figures in main text; 9 pages, 11 figures in appendi
    • …
    corecore