174 research outputs found

    Early Detection of Brain Pathology Suggestive of Early AD Using Objective Evaluation of FDG-PET Scans

    Get PDF
    The need for early detection of AD becomes critical as disease-modifying agents near the marketplace. Here, we present results from a study focused on improvement in detection of metabolic deficits related to neurodegenerative changes consistent with possible early AD with statistical evaluation of FDG-PET brain images. We followed 31 subjects at high risk or diagnosed with MCI/AD for 3 years. 15 met criteria for diagnosis of MCI, and five met criteria for AD. FDG-PET scans were completed at initiation and termination of the study. PET scans were read clinically and also evaluated objectively using Statistical Parametric Mapping (SPM). Using standard clinical evaluation of the FDG-PET scans, 11 subjects were detected, while 18 were detected using SPM evaluation. These preliminary results indicate that objective analyses may improve detection; however, early detection in at-risk normal subjects remains tentative. Several FDA-approved software packages are available that use objective analyses, thus the capacity exists for wider use of this method for MCI/AD

    Stagnant ice and age modelling in the Dome C region, Antarctica

    Get PDF
    The European Beyond EPICA project aims to extract a continuous ice core of up to 1.5 Ma, with a maximum age density of 20 kyr m-1 at Little Dome C (LDC). We present a 1D numerical model which calculates the age of the ice around Dome C. The model inverts for basal conditions and accounts either for melting or for a layer of stagnant ice above the bedrock. It is constrained by internal reflecting horizons traced in radargrams and dated using the EPICA Dome C (EDC) ice core age profile. We used three different radar datasets ranging from a 10 000 km2 airborne survey down to 5 km long ground-based radar transects over LDC. We find that stagnant ice exists in many places, including above the LDC relief where the new Beyond EPICA drill site (BELDC) is located. The modelled thickness of this layer of stagnant ice roughly corresponds to the thickness of the basal unit observed in one of the radar surveys and in the autonomous phase-sensitive radio-echo sounder (ApRES) dataset. At BELDC, the modelled stagnant ice thickness is 198±44 m and the modelled oldest age of ice is 1.45±0.16 Ma at a depth of 2494±30 m. This is very similar to all sites situated on the LDC relief, including that of the Million Year Ice Core project being conducted by the Australian Antarctic Division. The model was also applied to radar data in the area 10-15 km north of EDC (North Patch), where we find either a thin layer of stagnant ice (generally <60 m) or a negligible melt rate (<0.1 mm yr-1). The modelled maximum age at North Patch is over 2 Ma in most places, with ice at 1.5 Ma having a resolution of 9-12 kyr m-1, making it an exciting prospect for a future Oldest Ice drill site

    Extending the fabric from the EGRIPice core in space with geophysicalmethods and modelling

    Get PDF
    Anisotropic crystal fabrics in ice sheets develop as a consequence of deformation and hence record information of past ice flow. Simultaneously, the fabric affects the present-day bulk mechanical properties of glacier ice because the susceptibility of ice crystals to deformation is highly anisotropic. This is particularly relevant in dynamic areas such as fast-flowing glaciers and ice streams, where the formation of strong fabrics might play a critical role in facilitating ice flow. Anisotropy is ignored in most state-of-the-art ice sheet models, and while its importance has long been recognized, accounting for fabric evolution and its impact on the ice viscosity has only recently become feasible. Both the application of such models to ice streams and their verification through in-situ observations are still rare. Ice cores provide direct and detailed information on the crystal fabric, but the logistical cost, technical challenges, particularly in fast-flowing ice and shear margins, difficulty in reconstructing the absolute orientation of the core, and their limitation of being a point measurement, make ice cores impractical for a spatially extensive evaluation of the fabric type. Indirect geophysical methods applied from or above the ice surface create the link between the small scale of laboratory experiments and ice–core observations to the large-scale coverage required for ice flow models and the complete understanding of ice stream dynamics. Here, we present a comprehensive analysis of the distribution of the ice fabric in the upstream part of the North-East Greenland Ice Stream (NEGIS). Our results are based on a combination of methods applied to extensive airborne and ground-based radar surveys, ice- and firn-core observations, and numerical ice-flow modelling. They show that in the onset region of NEGIS and around the EGRIP ice core drilling site, the fabric is horizontally strongly anisotropic, forming a horizontal girdle perpendicular to the ice flow, while the horizontal anisotropy reduces quickly over distances of less than five ice thicknesses outside of the ice stream’s shear margins. Downstream of the drill site, the fabric develops into a more vertically symmetric configuration on a time scale of around 2 ka, the first observation of this kind. Our study shows how ice-core based fabric observations, geophysical surveys and ice-flow modelling complement each other to obtain a more comprehensive picture of the spatially strongly varying fabric

    Brief Communication: New radar constraints support presence of ice older than 1.5 Ma at Little Dome C.

    Get PDF
    The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C, an area ~35 km south-east of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019–2020 Austral summer using a new, multi-channel high-resolution VHF radar operating in the frequency range of 170–230 MHz. This new instrument is able to detect reflections in the near-basal region, where previous surveys were unable to trace continuous horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth–age relationship through the ice column at the now-chosen drill site, termed BELDC. These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth, and that there is about 375 m of ice older than 600 ka at BELDC. Stratigraphy is well preserved to 2565 m, below which there is a basal unit with unknown properties. A simple ice flow model tuned to the isochrones suggests ages likely reach 1.5 Ma near 2525 m, ~40 m above the basal unit and ~240 m above the bed, with sufficient resolution (14±1 ka m−1) to resolve 41 ka glacial cycles

    Understanding Antarctic ice-stream flow using ice-flow models and geophysical observations

    No full text
    Thesis (Ph.D.)--University of Washington, 2019Ice streams are the primary pathway by which Antarctic ice is evacuated to the ocean. Because the Antarctic ice sheets lose mass primarily through oceanic melt and calving, ice-stream dynamics exert a primary control on the mass balance of the ice sheets. Thus, changes in melt rates at the ice-sheet margins, or in accumulation in the ice-sheet interiors, affect ice-sheet mass balance on timescales modulated by the response time of the ice streams. Even abrupt changes in melt at the margins can cause ice-stream speedup and resultant thinning lasting millennia, so understanding the upstream propagation of marginally forced changes across timescales is key for understanding the ice sheets’ ongoing contribution to sea-level rise. This dissertation is comprised of three studies that use observations and models to understand changes to Antarctic ice-stream dynamics on timescales from decades to millennia. The first chapter synthesizes remotely sensed observations of Smith, Pope, and Kohler glaciers in West Antarctica to investigate the causes and extent of their retreat. These glaciers have displayed some of the largest measured grounding-line retreat, most rapid thinning, and largest speedup amongst Antarctic ice streams. This retreat has drawn interest in their stability both in its own right and as a harbinger of future changes to larger neighboring ice streams. In this study, recent melt rates were determined using flux divergence estimates derived from observations of ice thickness and surface velocity. Out-of-balance melt at the beginning of the study period indicates that the imbalance of this system predates the beginning of satellite velocity observations in 1996. Throughout much of 1996-2010, there was both greater melt over the ice shelves than flux across the grounding line, implying loss of floating ice and elevated melt forcing, and greater grounding-line flux than accumulation, implying adjustment of the grounded ice in response to the ongoing imbalance. The grounding line position of Kohler glacier, and a large melt channel that is unlikely to be a steady-state feature, suggest that the perturbation to this system began on Kohler glacier sometime around the 1970s. Viscosity of the ice shelves, inferred using a numerical model, indicates that weakening of the Crosson ice shelf was necessary to allow the observed speedup, though it is unable to determine whether the weakening was a cause or effect of the ongoing retreat. The second chapter uses a suite of numerical model simulations to determine the dominant drivers of the recent retreat of Smith, Pope, and Kohler glaciers, and extends those simulations that best match observations to evaluate likely future retreat. Similar to the findings of previous studies, the distribution of sub-shelf melt is found to be the primary control on the rate of grounding-line retreat, while the shelf-averaged melt rate exerts a secondary control. The model simulations indicate that, despite ongoing imbalance, the grounding-line position in 1996 was not inherently unstable, but rather elevated melt at the grounding line was required to cause the observed retreat. A weakening of the ice-shelf margins was found to hasten the onset of grounding-line retreat and led to greater speedup. However, without increases in melt beyond 1996 levels, marginal weakening was insufficient to initiate grounding-line retreat. All simulations that capture the observed retreat continue to lose mass until at least 2100, suggesting that ice in this basin may contribute over 8 mm to global mean sea level by 2100. The magnitude of thinning deep in the catchment suggests that the retreat of Kohler and Smith glacier may hasten the destabilization of the neighboring Thwaites glacier catchment. The third chapter uses the timescale of the recently drilled South Pole Ice Core (SPICEcore) and nearby geophysical observations to infer the history of ice flow near the South Pole during the last 10,000 years. The South Pole is located 180 km from the nearest ice divide and drains from the East Antarctic plateau through Academy glacier/Foundation ice stream. As a result, ice flow near the South Pole is potentially affected by the dynamics of these ice streams, and so the history of ice flow in this region has the potential to inform understanding of how marginally forced changes affect the ice-sheet interior. Because the South Pole is far from an ice divide, the accumulation record in SPICEcore incorporates both spatial variations in accumulation upstream and temporal variations in regional accumulation. Comparison between the SPICEcore accumulation record, derived by correcting measured layer thicknesses for thinning, with an accumulation record derived from new GPS and radar measurements upstream, yields insight into past ice flow and accumulation. When ice speeds are modeled as increasing by 15% since 10 ka, the upstream accumulation explains 77% of the variance in the SPICEcore-derived accumulation (vs. 22% without speedup). This correlation is only expected if the ice-flow direction and spatial pattern of accumulation were stable throughout the Holocene. The 15% speedup in turn suggests a slight (3-4%) steepening or thickening of the ice-sheet interior and provides a new constraint on the evolution of the East Antarctic Ice Sheet following the glacial termination
    corecore