193 research outputs found

    Early Detection of Brain Pathology Suggestive of Early AD Using Objective Evaluation of FDG-PET Scans

    Get PDF
    The need for early detection of AD becomes critical as disease-modifying agents near the marketplace. Here, we present results from a study focused on improvement in detection of metabolic deficits related to neurodegenerative changes consistent with possible early AD with statistical evaluation of FDG-PET brain images. We followed 31 subjects at high risk or diagnosed with MCI/AD for 3 years. 15 met criteria for diagnosis of MCI, and five met criteria for AD. FDG-PET scans were completed at initiation and termination of the study. PET scans were read clinically and also evaluated objectively using Statistical Parametric Mapping (SPM). Using standard clinical evaluation of the FDG-PET scans, 11 subjects were detected, while 18 were detected using SPM evaluation. These preliminary results indicate that objective analyses may improve detection; however, early detection in at-risk normal subjects remains tentative. Several FDA-approved software packages are available that use objective analyses, thus the capacity exists for wider use of this method for MCI/AD

    Stagnant ice and age modelling in the Dome C region, Antarctica

    Get PDF
    The European Beyond EPICA project aims to extract a continuous ice core of up to 1.5 Ma, with a maximum age density of 20 kyr m-1 at Little Dome C (LDC). We present a 1D numerical model which calculates the age of the ice around Dome C. The model inverts for basal conditions and accounts either for melting or for a layer of stagnant ice above the bedrock. It is constrained by internal reflecting horizons traced in radargrams and dated using the EPICA Dome C (EDC) ice core age profile. We used three different radar datasets ranging from a 10 000 km2 airborne survey down to 5 km long ground-based radar transects over LDC. We find that stagnant ice exists in many places, including above the LDC relief where the new Beyond EPICA drill site (BELDC) is located. The modelled thickness of this layer of stagnant ice roughly corresponds to the thickness of the basal unit observed in one of the radar surveys and in the autonomous phase-sensitive radio-echo sounder (ApRES) dataset. At BELDC, the modelled stagnant ice thickness is 198±44 m and the modelled oldest age of ice is 1.45±0.16 Ma at a depth of 2494±30 m. This is very similar to all sites situated on the LDC relief, including that of the Million Year Ice Core project being conducted by the Australian Antarctic Division. The model was also applied to radar data in the area 10-15 km north of EDC (North Patch), where we find either a thin layer of stagnant ice (generally <60 m) or a negligible melt rate (<0.1 mm yr-1). The modelled maximum age at North Patch is over 2 Ma in most places, with ice at 1.5 Ma having a resolution of 9-12 kyr m-1, making it an exciting prospect for a future Oldest Ice drill site

    Extending the fabric from the EGRIPice core in space with geophysicalmethods and modelling

    Get PDF
    Anisotropic crystal fabrics in ice sheets develop as a consequence of deformation and hence record information of past ice flow. Simultaneously, the fabric affects the present-day bulk mechanical properties of glacier ice because the susceptibility of ice crystals to deformation is highly anisotropic. This is particularly relevant in dynamic areas such as fast-flowing glaciers and ice streams, where the formation of strong fabrics might play a critical role in facilitating ice flow. Anisotropy is ignored in most state-of-the-art ice sheet models, and while its importance has long been recognized, accounting for fabric evolution and its impact on the ice viscosity has only recently become feasible. Both the application of such models to ice streams and their verification through in-situ observations are still rare. Ice cores provide direct and detailed information on the crystal fabric, but the logistical cost, technical challenges, particularly in fast-flowing ice and shear margins, difficulty in reconstructing the absolute orientation of the core, and their limitation of being a point measurement, make ice cores impractical for a spatially extensive evaluation of the fabric type. Indirect geophysical methods applied from or above the ice surface create the link between the small scale of laboratory experiments and ice–core observations to the large-scale coverage required for ice flow models and the complete understanding of ice stream dynamics. Here, we present a comprehensive analysis of the distribution of the ice fabric in the upstream part of the North-East Greenland Ice Stream (NEGIS). Our results are based on a combination of methods applied to extensive airborne and ground-based radar surveys, ice- and firn-core observations, and numerical ice-flow modelling. They show that in the onset region of NEGIS and around the EGRIP ice core drilling site, the fabric is horizontally strongly anisotropic, forming a horizontal girdle perpendicular to the ice flow, while the horizontal anisotropy reduces quickly over distances of less than five ice thicknesses outside of the ice stream’s shear margins. Downstream of the drill site, the fabric develops into a more vertically symmetric configuration on a time scale of around 2 ka, the first observation of this kind. Our study shows how ice-core based fabric observations, geophysical surveys and ice-flow modelling complement each other to obtain a more comprehensive picture of the spatially strongly varying fabric

    Brief Communication: New radar constraints support presence of ice older than 1.5 Ma at Little Dome C.

    Get PDF
    The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C, an area ~35 km south-east of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019–2020 Austral summer using a new, multi-channel high-resolution VHF radar operating in the frequency range of 170–230 MHz. This new instrument is able to detect reflections in the near-basal region, where previous surveys were unable to trace continuous horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth–age relationship through the ice column at the now-chosen drill site, termed BELDC. These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth, and that there is about 375 m of ice older than 600 ka at BELDC. Stratigraphy is well preserved to 2565 m, below which there is a basal unit with unknown properties. A simple ice flow model tuned to the isochrones suggests ages likely reach 1.5 Ma near 2525 m, ~40 m above the basal unit and ~240 m above the bed, with sufficient resolution (14±1 ka m−1) to resolve 41 ka glacial cycles

    Exploring the constraint profile of winter sports resort tourist segments

    Get PDF
    Many studies have confirmed the importance of market segmentation both theoretically and empirically. Surprisingly though, no study has so far addressed the issue from the perspective of leisure constraints. Since different consumers face different barriers, we look at participation in leisure activities as an outcome of the negotiation process that winter sports resort tourists go through, to balance between related motives and constraints. This empirical study reports the findings on the applicability of constraining factors in segmenting the tourists who visit winter sports resorts. Utilizing data from 1,391 tourists of winter sports resorts in Greece, five segments were formed based on their constraint, demographic and behavioral profile. Our findings indicate that such segmentation sheds light on factors that could potentially limit the full utilization of the market. To maximize utilization, we suggest customizing marketing to the profile of each distinct winter sports resort tourist segment that emerge
    corecore