60 research outputs found
Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis.
Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system
Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply.
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis
Ionic and electronic properties of the topological insulator BiTeSe investigated using -detected nuclear magnetic relaxation and resonance of Li
We report measurements on the high temperature ionic and low temperature
electronic properties of the 3D topological insulator BiTeSe using
ion-implanted Li -detected nuclear magnetic relaxation and
resonance. With implantation energies in the range 5-28 keV, the probes
penetrate beyond the expected range of the topological surface state, but are
still within 250 nm of the surface. At temperatures above ~150 K, spin-lattice
relaxation measurements reveal isolated Li diffusion with an
activation energy eV and attempt frequency s for atomic site-to-site hopping. At lower
temperature, we find a linear Korringa-like relaxation mechanism with a field
dependent slope and intercept, which is accompanied by an anomalous field
dependence to the resonance shift. We suggest that these may be related to a
strong contribution from orbital currents or the magnetic freezeout of charge
carriers in this heavily compensated semiconductor, but that conventional
theories are unable to account for the extent of the field dependence.
Conventional NMR of the stable host nuclei may help elucidate their origin.Comment: 17 pages, 12 figures, submitted to Phys. Rev.
Recommended from our members
T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation
The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL. The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed autophagy and increased levels of BCL2, S1P1, and ICAM1 in human T-LBL compared with T-ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1, and augmented homotypic cell-cell adhesion.Stem Cell and Regenerative Biolog
National Telemedicine Initiatives: Essential to Healthcare Reform
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78116/1/tmj.2009.9960.pd
A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf
Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability
Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production
SUMMARY Vitamin D insufficiency is a worldwide epidemic affecting billions of individuals, including pregnant women and children. Despite its high incidence, the impact of active vitamin D3 (1,25(OH)D3) on embryonic development beyond osteo-regulation remains largely undefined. Here, we demonstrate that 1,25(OH)D3 availability modulates zebrafish hematopoietic stem and progenitor cell (HSPC) production. Loss of Cyp27b1-mediated biosynthesis or vitamin D receptor (VDR) function by gene knockdown resulted in significantly reduced runx1 expression and Flk1+cMyb+ HSPC numbers. Selective modulation in vivo and in vitro in zebrafish indicated that vitamin D3 acts directly on HSPCs, independent of calcium regulation, to increase proliferation. Notably, ex vivo treatment of human HSPCs with 1,25(OH)D3 also enhanced hematopoietic colony numbers, illustrating conservation across species. Finally, gene expression and epistasis analysis indicated that CXCL8 (IL-8) was a functional target of vitamin D3-mediated HSPC regulation. Together, these findings highlight the relevance of developmental 1,25(OH)D3 availability for definitive hematopoiesis and suggest potential therapeutic utility in HSPC expansion
Designer blood: creating hematopoietic lineages from embryonic stem cells
Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases
<i>Isthmin 1</i> (<i>ism1</i>) is required for normal hematopoiesis in developing zebrafish
<div><p>Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish <i>(Danio rerio)</i>, a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on <i>isthmin 1</i> (<i>ism1)</i> due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize <i>ism1</i>, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. <i>ism1</i> knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from <i>ism1</i> morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that <i>ism1</i> is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into <i>ism1</i> and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.</p></div
- …