6,211 research outputs found

    Toward Automation of the Supine Pressor Test for Preeclampsia

    Get PDF
    Preeclampsia leads to increased risk of morbidity and mortality for both mother and fetus. Most previous studies have largely neglected mechanical compression of the left renal vein by the gravid uterus as a potential mechanism. In this study, we first used a murine model to investigate the pathophysiology of left renal vein constriction. The results indicate that prolonged renal vein stenosis after 14 days can cause renal necrosis and an increase in blood pressure (BP) of roughly 30 mmHg. The second part of this study aimed to automate a diagnostic tool, known as the supine pressor test (SPT), to enable pregnant women to assess their preeclampsia development risk. A positive SPT has been previously defined as an increase of at least 20 mmHg in diastolic BP when switching between left lateral recumbent and supine positions. The results from this study established a baseline BP increase between the two body positions in nonpregnant women and demonstrated the feasibility of an autonomous SPT in pregnant women. Our results demonstrate that there is a baseline increase in BP of roughly 10-14 mmHg and that pregnant women can autonomously perform the SPT. Overall, this work in both rodents and humans suggests that (1) stenosis of the left renal vein in mice leads to elevation in BP and acute renal failure, (2) nonpregnant women experience a baseline increase in BP when they shift from left lateral recumbent to supine position, and (3) the SPT can be automated and used autonomously

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication

    Comparison of Two Common Outpatient Preparations for Colonoscopy in Children and Youth

    Get PDF
    Colonoscopies are often performed in children for diagnostic and therapeutic purposes. Our study compared two bowel-cleansing solutions: sodium picosulphate, magnesium oxide, and citric acid (Pico-Salax) with liquid magnesium citrate as preparations for colonoscopy. A retrospective chart review of all patients seen in the Gastroenterology outpatient clinic and who underwent bowel cleansing in preparation for colonoscopy from February to December 2006 was undertaken. Thirty-two children received Pico-Salax and 36 received liquid magnesium citrate. The tolerability of both solutions was similar. Most children in both groups had liquid stools and complete colonoscopies. Bowel preparation for a colonoscopy can be successfully achieved using either Pico-Salax or liquid magnesium citrate

    Direct Assessment of Cumulative Aryl Hydrocarbon Receptor Agonist Activity in Sera from Experimentally Exposed Mice and Environmentally Exposed Humans

    Get PDF
    Background: Aryl hydrocarbon receptor (AhR) ligands adversely affect many biological processes. However, assessment of the significance of human exposures is hampered by an incomplete understanding of how complex mixtures affect AhR activation/inactivation. Objectives: These studies used biological readouts to provide a broader context for estimating human risk than that obtained with serum extraction and gas chromatography/mass spectroscopy (GC/MS)-based assays alone. Methods: AhR agonist activity was quantified in sera from dioxin-treated mice, commercial human sources, and polychlorinated biphenyl (PCB)–exposed Faroe Islanders using an AhR-driven reporter cell line. To validate relationships between serum AhR agonist levels and biological outcomes, AhR agonist activity in mouse sera correlated with toxic end points. AhR agonist activity in unmanipulated (“neat”) human sera was compared with these biologically relevant doses and with GC/MS-assayed PCB levels. Results: Mouse serum AhR agonist activity correlated with injected dioxin dose, thymic atrophy, and heptomegaly, validating the use of neat serum to assess AhR agonist activity. AhR agonist activity in sera from Faroe Islanders varied widely, was associated with the frequency of recent pilot whale dinners, but did not correlate with levels of PCBs quantified by GC/MS. Surprisingly, significant “baseline” AhR activity was found in commercial human sera. Conclusions: An AhR reporter assay revealed cumulative levels of AhR activation potential in neat serum, whereas extraction may preclude detection of important non-dioxin-like biological activity. Significant levels of AhR agonist activity in commercial sera and in Faroe Islander sera, compared with that from experimentally exposed mice, suggest human exposures that are biologically relevant in both populations

    3C 220.3: a radio galaxy lensing a submillimeter galaxy

    Get PDF
    Herschel Space Observatory photometry and extensive multiwavelength followup have revealed that the powerful radio galaxy 3C 220.3 at z=0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z=2.221. At an observed wavelength of 1mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of 1.8" radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a powerful radio galaxy not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1.5", provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1.02") and B (0.61") are about 0.4 +/- 0.3 and 0.55 +/- 0.3. The mass to i-band light ratios of A and B, M/L ~ 8 +/- 4 Msun/Lsun, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CASTLES, LSD, and SL2S samples. The lensed SMG is extremely bright with observed f(250um) = 440mJy owing to a magnification factor mu~10. The SMG spectrum shows luminous, narrow CIV 154.9nm emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.Comment: 17 pages, 14 Figures, accepted for publication in Ap

    Memory-Like Inflammatory Responses of Microglia to Rising Doses of LPS: Key Role of PI3Kγ

    Get PDF
    Trained immunity and immune tolerance have been identified as long-term response patterns of the innate immune system. The causes of these opposing reactions remain elusive. Here, we report about differential inflammatory responses of microglial cells derived from neonatal mouse brain to increasing doses of the endotoxin LPS. Prolonged priming with ultra-low LPS doses provokes trained immunity, i.e., increased production of pro-inflammatory mediators in comparison to the unprimed control. In contrast, priming with high doses of LPS induces immune tolerance, implying decreased production of inflammatory mediators and pronounced release of anti-inflammatory cytokines. Investigation of the signaling processes and cell functions involved in these memory-like immune responses reveals the essential role of phosphoinositide 3-kinase γ (PI3Kγ), one of the phosphoinositide 3-kinase species highly expressed in innate immune cells. Together, our data suggest profound influence of preceding contacts with pathogens on the immune response of microglia. The impact of these interactions—trained immunity or immune tolerance—appears to be shaped by pathogen dose

    Outcomes of open mitral valve replacement versus Transcatheter mitral valve repair; insight from the National Inpatient Sample Database.

    Get PDF
    Background: Transcatheter mitral valve repair and replacement (TMVR) is a minimally invasive alternative to conventional open-heart mitral valve replacement (OMVR). The present study aims to compare the burden, demographics, cost, and complications of TMVR and OMVR. Methods: The United States National Inpatient Sample (US-NIS) for the year 2017 was queried to identify all cases of TMVR and OMVR. Categorical and continuous data were analyzed using Pearson chi-square and independent t-test analysis, respectively. An adjusted odds ratio (aOR) based on the ordinal logistic regression (OLR) model was calculated to determine the association between outcome variables. Results: Of 19,580 patients, 18,460 (94%) underwent OMVR and 1120 (6%) TMVR. Mean ages of patients were 63 ± 14 years (OMVR) and 67 ± 13 years (TMVR). Both cohorts were predominantly Caucasian (73% OMVR vs. 74.0% TMVR). The patients who underwent TMVR were more likely to belong to a household with an income in the highest quartile (26.1% vs. 22.0% for OMVR) versus the lowest quartile (22.1% vs. 27.8%). The average number of days from admission to TMVR was less compared to OMVR (2.63 days vs. 3.02 days, p = 0.015). In-hospital length of stay (LOS) was significantly lower for TMVR compared to OMVR (11.56 vs. 14.01 days, p=\u3c0.0001). Adjusted in-hospital mortality taking into account comorbidities showed no significant difference between the two groups (OR 1.2, 0.93-1.68, p = 0.15). Conclusion: Patients undergoing TMVR were older and more financially affluent. TMVR was more costly but was associated with a shorter hospital stay and similar mortality to OMVR

    Behavioral and Other Phenotypes in a Cytoplasmic Dynein Light Intermediate Chain 1 Mutant Mouse

    Get PDF
    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system
    corecore