303 research outputs found

    VSX J003909.7+611233: a new slowly pulsating B (SPB) star in Cassiopeia?

    Get PDF
    We report the discovery of a new 13th magnitude variable star in Cassiopeia close to the variable KP Cas.Analysis of six days of intensive photometry shows a regular, near sinusoidal modulation with an amplitude of 0.024 mag and a period of 0.43815(31)d.Although its colour indicates a spectral type around F0 the star probably suffers up to 2−2.5 magnitudes of extinction, so could be an Aor B-type star. Given the period, the low amplitude, the shape of the lightcurve and the probable spectral type we consider it most likely to be a slowly pulsating B-type (SPB) star.The variable has been registered in the International Variable Star Index with the identifier VSX J003909.7+611233

    BK Lyncis: The Oldest Old Nova?... And a Bellwether for Cataclysmic-Variable Evolution

    Get PDF
    We summarize the results of a 20-year campaign to study the light curves of BK Lyncis, a nova-like star strangely located below the 2-3 hour orbital period gap in the family of cataclysmic variables. Two apparent "superhumps" dominate the nightly light curves - with periods 4.6% longer, and 3.0% shorter, than P_orb. The first appears to be associated with the star's brighter states (V~14), while the second appears to be present throughout and becomes very dominant in the low state (V~15.7). Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 30 December 101, and (b) it has been fading ever since, but has taken ~2000 years for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behavior is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period novalikes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they're just getting started in their postnova cooling). Four: why the orbital periods, accretion rates, and white-dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced postnova brightness boosts the mean mass-transfer rate). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides P_orb, is time since the last classical-nova eruption.Comment: PDF, 46 pages, 4 tables, 10 figures; in preparation; more info at http://cbastro.org

    HST/ACS Emission Line Imaging of Low Redshift 3CR Radio Galaxies I: The Data

    Get PDF
    We present 19 nearby (z<0.3) 3CR radio galaxies imaged at low- and high-excitation as part of a Cycle 15 Hubble Space Telescope snapshot survey with the Advanced Camera for Surveys. These images consist of exposures of the H-alpha (6563 \AA, plus [NII] contamination) and [OIII] 5007 \AA emission lines using narrow-band linear ramp filters adjusted according to the redshift of the target. To facilitate continuum subtraction, a single-pointing 60 s line-free exposure was taken with a medium-band filter appropriate for the target's redshift. We discuss the steps taken to reduce these images independently of the automated recalibration pipeline so as to use more recent ACS flat-field data as well as to better reject cosmic rays. We describe the method used to produce continuum-free (pure line-emission) images, and present these images along with qualitative descriptions of the narrow-line region morphologies we observe. We present H-alpha+[NII] and [OIII] line fluxes from aperture photometry, finding the values to fall expectedly on the redshift-luminosity trend from a past HST/WFPC2 emission line study of a larger, generally higher redshift subset of the 3CR. We also find expected trends between emission line luminosity and total radio power, as well as a positive correlation between the size of the emission line region and redshift. We discuss the associated interpretation of these results, and conclude with a summary of future work enabled by this dataset.Comment: 18 pages, 12 figures, accepted for publication in ApJ
    corecore