303 research outputs found
VSX J003909.7+611233: a new slowly pulsating B (SPB) star in Cassiopeia?
We report the discovery of a new 13th magnitude variable star in Cassiopeia
close to the variable KP Cas.Analysis of six days of intensive photometry shows
a regular, near sinusoidal modulation with an amplitude of 0.024 mag and a
period of 0.43815(31)d.Although its colour indicates a spectral type around F0
the star probably suffers up to 2−2.5 magnitudes of extinction, so could be an Aor B-type star. Given the period, the low amplitude, the shape of the lightcurve
and the probable spectral type we consider it most likely to be a slowly pulsating
B-type (SPB) star.The variable has been registered in the International Variable
Star Index with the identifier VSX J003909.7+611233
BK Lyncis: The Oldest Old Nova?... And a Bellwether for Cataclysmic-Variable Evolution
We summarize the results of a 20-year campaign to study the light curves of
BK Lyncis, a nova-like star strangely located below the 2-3 hour orbital period
gap in the family of cataclysmic variables. Two apparent "superhumps" dominate
the nightly light curves - with periods 4.6% longer, and 3.0% shorter, than
P_orb. The first appears to be associated with the star's brighter states
(V~14), while the second appears to be present throughout and becomes very
dominant in the low state (V~15.7).
Starting in the year 2005, the star's light curve became indistinguishable
from that of a dwarf nova - in particular, that of the ER UMa subclass.
Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of
the probable nova on 30 December 101, and (b) it has been fading ever since,
but has taken ~2000 years for the accretion rate to drop sufficiently to permit
dwarf-nova eruptions. If such behavior is common, it can explain other puzzles
of CV evolution. One: why the ER UMa class even exists (because all members can
be remnants of recent novae). Two: why ER UMa stars and short-period novalikes
are rare (because their lifetimes, which are essentially cooling times, are
short). Three: why short-period novae all decline to luminosity states far
above their true quiescence (because they're just getting started in their
postnova cooling). Four: why the orbital periods, accretion rates, and
white-dwarf temperatures of short-period CVs are somewhat too large to arise
purely from the effects of gravitational radiation (because the unexpectedly
long interval of enhanced postnova brightness boosts the mean mass-transfer
rate). These are substantial rewards in return for one investment of
hypothesis: that the second parameter in CV evolution, besides P_orb, is time
since the last classical-nova eruption.Comment: PDF, 46 pages, 4 tables, 10 figures; in preparation; more info at
http://cbastro.org
HST/ACS Emission Line Imaging of Low Redshift 3CR Radio Galaxies I: The Data
We present 19 nearby (z<0.3) 3CR radio galaxies imaged at low- and
high-excitation as part of a Cycle 15 Hubble Space Telescope snapshot survey
with the Advanced Camera for Surveys. These images consist of exposures of the
H-alpha (6563 \AA, plus [NII] contamination) and [OIII] 5007 \AA emission lines
using narrow-band linear ramp filters adjusted according to the redshift of the
target. To facilitate continuum subtraction, a single-pointing 60 s line-free
exposure was taken with a medium-band filter appropriate for the target's
redshift. We discuss the steps taken to reduce these images independently of
the automated recalibration pipeline so as to use more recent ACS flat-field
data as well as to better reject cosmic rays. We describe the method used to
produce continuum-free (pure line-emission) images, and present these images
along with qualitative descriptions of the narrow-line region morphologies we
observe. We present H-alpha+[NII] and [OIII] line fluxes from aperture
photometry, finding the values to fall expectedly on the redshift-luminosity
trend from a past HST/WFPC2 emission line study of a larger, generally higher
redshift subset of the 3CR. We also find expected trends between emission line
luminosity and total radio power, as well as a positive correlation between the
size of the emission line region and redshift. We discuss the associated
interpretation of these results, and conclude with a summary of future work
enabled by this dataset.Comment: 18 pages, 12 figures, accepted for publication in ApJ
- …
