4,167 research outputs found
d_{xy}-Density wave in fermion-fermion cold atom mixtures
We study density wave instabilities in a doubly-degenerate Fermi-Fermi
mixture with symmetry on a square lattice. For sufficiently
large on-site inter-species repulsion, when the two species of fermions are
both at half-filling, two conventional (-wave) number density waves are
formed with a -phase difference between them to minimize the inter-species
repulsion. Upon moving one species away from half-filling, an unconventional
density wave with -wave symmetry emerges. When both species are away
from the vicinity of half-filling, superconducting instabilities dominate. We
present results of a functional renormalization-group calculation that maps out
the phase diagram at weak couplings. Also, we provide a simple explanation for
the emergence of the -density wave phase based on a four-patch model.
We find a robust and general mechanism for -density-wave formation that
is related to the shape and size of the Fermi surfaces. The density imbalance
between the two species of fermions in the vicinity of half-filling leads to
phase-space discrepancy for different inter-species Umklapp couplings. Using a
phase space argument for leading corrections in the one-loop renormalization
group approach to fermions, we show that the phase-space discrepancy in our
system causes opposite flows for the two leading intra-species Umklapp
couplings and that this triggers the -density-wave instability.Comment: revised long version; 8 pages, 7 figure
Myeloid suppressor cell depletion augments antitumor activity in lung cancer.
BackgroundMyeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer.Principal findingsIndividual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls.SignificanceOur data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion
Portable polymer optical fibre cleaver
Polymer optical fibre (POF) is a growing technology in short distance telecommunication due to its flexibility, easy connectorization, and lower cost than the mostly deployed silica optical fibre (SOF) technology. Microstructured POFs (mPOFs) have particular promising potential applica-tions in the sensors and telecommunications field, they could specially help to reduce losses in poly-mer fibres by using hollow-core fibres. However, mPOFs are intrinsically more difficult to cut due to the cladding hole structure and it becomes necessary to have a high quality polymer optical cleaver. In the well-known hot-blade cutting process, fibre and blade are heated, which requires electrical compo-nents and increases cost. A new method has recently been published to cut POF without the need for heating the blade/fibre, therefore electronically devices are not required if it is used a proper mechani-cal system. In this paper, we present a passive and portable polymer optical cleaver implemented with a mechanical system formed by a constant force spring and a damper
Functional muscle hypertrophy by increased insulin-like growth factor 1 does not require dysferlin.
IntroductionDysferlin loss-of-function mutations cause muscular dystrophy, accompanied by impaired membrane repair and muscle weakness. Growth promoting strategies including insulin-like growth factor 1 (IGF-1) could provide benefit but may cause strength loss or be ineffective. The objective of this study was to determine whether locally increased IGF-1 promotes functional muscle hypertrophy in dysferlin-null (Dysf-/- ) mice.MethodsMuscle-specific transgenic expression and postnatal viral delivery of Igf1 were used in Dysf-/- and control mice. Increased IGF-1 levels were confirmed by enzyme-linked immunosorbent assay. Testing for skeletal muscle mass and function was performed in male and female mice.ResultsMuscle hypertrophy occurred in response to increased IGF-1 in mice with and without dysferlin. Male mice showed a more robust response compared with females. Increased IGF-1 did not cause loss of force per cross-sectional area in Dysf-/- muscles.DiscussionWe conclude that increased local IGF-1 promotes functional hypertrophy when dysferlin is absent and reestablishes IGF-1 as a potential therapeutic for dysferlinopathies
Westerbork Ultra-Deep Survey of HI at z=0.2
In this contribution, we present some preliminary observational results from
the completed ultra-deep survey of 21cm emission from neutral hydrogen at
redshifts z=0.164-0.224 with the Westerbork Synthesis Radio Telescope. In two
separate fields, a total of 160 individual galaxies has been detected in
neutral hydrogen, with HI masses varying from 1.1x10^9 to 4.0x10^10 Msun. The
largest galaxies are spatially resolved by the synthesized beam of 23x37
arcsec^2 while the velocity resolution of 19 km/s allowed the HI emission lines
to be well resolved. The large scale structure in the surveyed volume is traced
well in HI, apart from the highest density regions like the cores of galaxy
clusters. All significant HI detections have obvious or plausible optical
counterparts which are usually blue late-type galaxies that are UV-bright. One
of the observed fields contains a massive Butcher-Oemler cluster but none of
the associated blue galaxies has been detected in HI. The data suggest that the
lower-luminosity galaxies at z=0.2 are more gas-rich than galaxies of similar
luminosities at z=0, pending a careful analysis of the completeness near the
detection limit. Optical counterparts of the HI detected galaxies are mostly
located in the 'blue cloud' of the galaxy population although several galaxies
on the 'red sequence' are also detected in HI. These results hold great promise
for future deep 21cm surveys of neutral hydrogen with MeerKAT, APERTIF, ASKAP,
and ultimately the Square Kilometre Array.Comment: 10 pages, 9 figures, Proceedings of ISKAF2010 Science Meeting: A New
Golden Age for Radio Astronomy, June 10-14 2010, Assen, the Netherlands.
Edited by J. van Leeuwen. Movies of rendered rotating data cubes are
available at http://www.astro.rug.nl/~verheyen/BUDHIES/index.htm
Radiation-Pressure-Mediated Control of an Optomechanical Cavity
We describe and demonstrate a method to control a detuned movable-mirror
Fabry-Perot cavity using radiation pressure in the presence of a strong optical
spring. At frequencies below the optical spring resonance, self-locking of the
cavity is achieved intrinsically by the optomechanical (OM) interaction between
the cavity field and the movable end mirror. The OM interaction results in a
high rigidity and reduced susceptibility of the mirror to external forces.
However, due to a finite delay time in the cavity, this enhanced rigidity is
accompanied by an anti-damping force, which destabilizes the cavity. The cavity
is stabilized by applying external feedback in a frequency band around the
optical spring resonance. The error signal is sensed in the amplitude
quadrature of the transmitted beam with a photodetector. An amplitude modulator
in the input path to the cavity modulates the light intensity to provide the
stabilizing radiation pressure force
Tumor site immune markers associated with risk for subsequent basal cell carcinomas.
BackgroundBasal cell carcinoma (BCC) tumors are the most common skin cancer and are highly immunogenic.ObjectiveThe goal of this study was to assess how immune-cell related gene expression in an initial BCC tumor biopsy was related to the appearance of subsequent BCC tumors.Materials and methodsLevels of mRNA for CD3ε (a T-cell receptor marker), CD25 (the alpha chain of the interleukin (IL)-2 receptor expressed on activated T-cells and B-cells), CD68 (a marker for monocytes/macrophages), the cell surface glycoprotein intercellular adhesion molecule-1 (ICAM-1), the cytokine interferon-γ (IFN-γ) and the anti-inflammatory cytokine IL-10 were measured in BCC tumor biopsies from 138 patients using real-time PCR.ResultsThe median follow-up was 26.6 months, and 61% of subjects were free of new BCCs two years post-initial biopsy. Patients with low CD3ε CD25, CD68, and ICAM-1 mRNA levels had significantly shorter times before new tumors were detected (p = 0.03, p = 0.02, p = 0.003, and p = 0.08, respectively). Furthermore, older age diminished the association of mRNA levels with the appearance of subsequent tumors.ConclusionsOur results show that levels of CD3ε, CD25, CD68, and ICAM-1 mRNA in BCC biopsies may predict risk for new BCC tumors
- …