362 research outputs found

    Are Some Milky Way Globular Clusters Hosted by Undiscovered Galaxies?

    Full text link
    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass - halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy's total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 globular clusters per 109^9 MM_\odot of total mass, the surviving Milky Way (MW) subhalos with masses smaller than 1010M10^{10} M_\odot could host as many as 5 to 31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90%\% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass-halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW's outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.Comment: 5 pages, 4 figures; ApJL in pres

    Numerically Modeling the First Peak of the Type IIb SN 2016gkg

    Get PDF
    Many Type IIb supernovae (SNe) show a prominent additional early peak in their light curves, which is generally thought to be due to the shock cooling of extended hydrogen-rich material surrounding the helium core of the exploding star. The recent SN 2016gkg was a nearby Type IIb SN discovered shortly after explosion, which makes it an excellent candidate for studying this first peak. We numerically explode a large grid of extended envelope models and compare these to SN 2016gkg to investigate what constraints can be derived from its light curve. This includes exploring density profiles for both a convective envelope and an optically thick steady-state wind, the latter of which has not typically been considered for Type IIb SNe models. We find that roughly 0.02M\sim0.02\,M_\odot of extended material with a radius of 180260R\approx180-260\,R_\odot reproduces the photometric light curve data, consistent with pre-explosion imaging. These values are independent of the assumed density profile of this material, although a convective profile provides a somewhat better fit. We infer from our modeling that the explosion must have occurred within 23hrs\approx2-3\,{\rm hrs} of the first observed data point, demonstrating that this event was caught very close to the moment of explosion. Nevertheless, our best-fitting one-dimensional models overpredict the earliest velocity measurements, which suggests that the hydrogen-rich material is not distributed in a spherically symmetric manner. We compare this to the asymmetries seen in the SN IIb remnant Cas A, and we discuss the implications of this for Type IIb SN progenitors and explosion models.Comment: 8 pages, 8 figures, updated version accepted for publication in The Astrophysical Journa

    Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V

    Get PDF
    We present a chemodynamical analysis of the Leo~V dwarf galaxy, based on Keck II DEIMOS spectra of 8 member stars. We find a systemic velocity for the system of vr=170.91.9+2.1\langle v_r\rangle = 170.9^{+ 2.1}_{-1.9}kms1^{-1}, and barely resolve a velocity dispersion for the system, with σvr=2.31.6+3.2\sigma_{vr} = 2.3^{+3.2}_{-1.6}kms1^{-1}, consistent with previous studies of Leo~V. The poorly resolved dispersion means we are unable to adequately constrain the dark matter content of Leo~V. We find an average metallicity for the dwarf of [Fe/H]=2.48±0.21 = -2.48\pm0.21, and measure a significant spread in the iron abundance of its member stars, with 3.1-3.1\le[Fe/H]1.9\le-1.9 dex, which cleanly identifies Leo~V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for tidal substructure around Leo~V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dvdχ=4.12.6+2.8\frac{{\rm d}v}{{\rm d}\chi} = -4.1^{+2.8}_{-2.6}kms1^{-1} per arcmin (or dvdχ=71.945.6+50.8\frac{{\rm d}v}{{\rm d}\chi} = -71.9^{+50.8}_{-45.6}kms1^{-1}~kpc1^{-1}), which points almost directly toward the Galactic centre. We argue that Leo~V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.Comment: 14 pages, 12 figures, accepted for publication in MNRAS. Updated to include minor revisions from referee proces

    The Density Profiles of Massive, Relaxed Galaxy Clusters. I. The Total Density Over Three Decades in Radius

    Get PDF
    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive, relaxed galaxy clusters with centrally-located brightest cluster galaxies (BCGs) at z=0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of ~3-3000 kpc. Lensing-derived mass profiles typically agree with independent X-ray estimates within ~15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated along the line of sight. The inner logarithmic slope gamma_tot of the total density profile measured over r/r200=0.003-0.03, where rho_tot ~ r^(-gamma_tot), is found to be nearly universal, with a mean = 1.16 +- 0.05 (random) +0.05-0.07 (systematic) and an intrinsic scatter of < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, obtained via Keck spectroscopy, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with numerical simulations that contain only dark matter, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold dark matter is a better description of the total mass density at radii >~ 5-10 kpc than that of dark matter alone. Hydrodynamical simulations that include baryons, cooling, and feedback currently provide a poorer match. We discuss the significance of our findings for understanding the assembly of BCGs and cluster cores, particularly the influence of baryons on the inner DM halo. [abridged]Comment: Updated to matched the published version in Ap

    Separating baryons and dark matter in cluster cores: a full 2-D lensing and dynamic analysis of Abell 383 and MS2137-23

    Get PDF
    (abridged) We utilize existing imaging and spectroscopic data for the galaxy clusters MS2137-23 and Abell 383 to present improved measures of the distribution of dark and baryonic material in the clusters' central regions. Our method, based on the combination of gravitational lensing and dynamical data, is uniquely capable of separating the distribution of dark and baryonic components at scales below 100 kpc. We find a variety of strong lensing models fit the available data, including some with dark matter profiles as steep as expected from recent simulations. However, when combined with stellar velocity dispersion data for the brightest member, shallower inner slopes than predicted by numerical simulations are preferred. For Abell 383, the preferred shallow inner slopes are statistically a good fit only when the multiple image position uncertainties associated with our lens model are assumed to be 0\farcs5, to account for unknown substructure. No statistically satisfactory fit was obtained matching both the multiple image lensing data and the velocity dispersion profile of the brightest cluster galaxy in MS2137-23. This suggests that the mass model we are using, which comprises a pseudo-elliptical generalized NFW profile and a brightest cluster galaxy component may inadequately represent the inner cluster regions. This may plausibly arise due to halo triaxiality or by the gravitational interaction of baryons and dark matter in cluster cores. However, the progress made via this detailed study highlights the key role that complementary observations of lensed features and stellar dynamics offer in understanding the interaction between dark and baryonic matter on non-linear scales in the central regions of clusters.Comment: 18 pages, 9 figures; accepted for publication in the Astrophysical Journa
    corecore