1,346 research outputs found
Fast Solvers for Cahn-Hilliard Inpainting
We consider the efficient solution of the modified Cahn-Hilliard equation for binary image inpainting using convexity splitting, which allows an unconditionally gradient stable time-discretization scheme. We look at a double-well as well as a double obstacle potential. For the latter we get a nonlinear system for which we apply a semi-smooth Newton method combined with a Moreau-Yosida regularization technique. At the heart of both methods lies the solution of large and sparse linear systems. We introduce and study block-triangular preconditioners using an efficient and easy to apply Schur complement approximation. Numerical results indicate that our preconditioners work very well for both problems and show that qualitatively better results can be obtained using the double obstacle potential
The Holobiont Imperative: perspectives from early emerging animals
This book examines how the growing knowledge of the huge range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Individuals from simple invertebrates to human are not solitary, homogenous entities but consist of complex communities of many species that likely evolved during a billion years of coexistence. Defining the individual microbe-host conversations in these consortia, is a challenging but necessary step on the path to understanding the function of the associations as a whole. The hologenome theory of evolution considers the holobiont with its hologenome as a unit of selection in evolution. This new view may have profound impact on understanding a strictly microbe/symbiont-dependent life style and its evolutionary consequences. It may also affect the way how we approach complex environmental diseases from corals (coral bleaching) to human (inflammatory bowel disease etc). The book is written for scientists as well as medically interested persons in the field of immunobiology, microbiology, evolutionary biology, evolutionary medicine and corals
A quantitative state and transition model for the Mitchell grasslands of Central Western Queensland
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and edaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described.
The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale
Predictors and Consequences of Anaemia Among Antiretroviral-Naïve HIV-Infected and HIV-Uninfected Children in Tanzania.
Predictors and consequences of childhood anaemia in settings with high HIV prevalence are not well known. The aims of the present study were to identify maternal and child predictors of anaemia among children born to HIV-infected women and to study the association between childhood anaemia and mortality. Prospective cohort study. Maternal characteristics during pregnancy and Hb measurements at 3-month intervals from birth were available for children. Information was also collected on malaria and HIV infection in the children, who were followed up for survival status until 24 months after birth. Dar es Salaam, Tanzania. The study sample consisted of 829 children born to HIV-positive women. Advanced maternal clinical HIV disease (relative risk (RR) for stage > or =2 v. stage 1: 1.31, 95 % CI 1.14, 1.51) and low CD4 cell counts during pregnancy (RR for <350 cells/mm3 v. > or =350 cells/mm3: 1.58, 95 % CI 1.05, 2.37) were associated with increased risk of anaemia among children. Birth weight <2500 g, preterm birth (<34 weeks), malaria parasitaemia and HIV infection in the children also increased the risk of anaemia. Fe-deficiency anaemia in children was an independent predictor of mortality in the first two years of life (hazard ratio 1.99, 95 % CI 1.06, 3.72). Comprehensive care including highly active antiretroviral therapy to eligible HIV-infected women during pregnancy could reduce the burden of anaemia in children. Programmes for the prevention of mother-to-child transmission of HIV and antimalarial treatment to children could improve child survival in settings with high HIV prevalence
Identifying state and transition models in the mitchell grasslands
The Mitchell grasslands are the most extensive and productive native pastures of semi -arid western Queensland. The grasslands are dominated by the long -lived perennial Astrebla spp. (Mitchell grasses). Rainfall is highly variable, leading to fluctuations in both pasture yield and composition, particularly of annual and ephemeral species growing between these perennial tussocks (Orr and Holmes 1984). These fluctuations create problems when attempting to assess rangeland condition and trend which is often based upon single, or short term, data. Furthermore, Everist and Webb (1975) concluded "the extrapolation from observations made at any one time can be misleading and inaccurate". This paper summarises an approach by which State and Transition theory (Westoby et al. 1989) and the Degradation Gradient Method (Bosch and Kellner 1991) were used to develop models of vegetation change which were able to account for this inherent variability
The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design and First Results
VENGA is a large-scale extragalactic IFU survey, which maps the bulges, bars
and large parts of the outer disks of 32 nearby normal spiral galaxies. The
targets are chosen to span a wide range in Hubble types, star formation
activities, morphologies, and inclinations, at the same time of having vast
available multi-wavelength coverage from the far-UV to the mid-IR, and
available CO and 21cm mapping. The VENGA dataset will provide 2D maps of the
SFR, stellar and gas kinematics, chemical abundances, ISM density and
ionization states, dust extinction and stellar populations for these 32
galaxies. The uniqueness of the VIRUS-P large field of view permits these
large-scale mappings to be performed. VENGA will allow us to correlate all
these important quantities throughout the different environments present in
galactic disks, allowing the conduction of a large number of studies in star
formation, structure assembly, galactic feedback and ISM in galaxies.Comment: 7 pages, 3 figures, proceedings of the "Third Biennial Frank N. Bash
Symposium, New Horizons in Astronomy" held in Austin, TX, Oct. 2009. To be
published in the Astronomical Society of the Pacific Conference Series, eds.
L. Stanford, L. Hao, Y. Mao, J. Gree
The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss
Analysis of genomic resources available for cnidarians revealed that several key components of the vertebrate innate immune repertoire are present in representatives of the basal cnidarian class Anthozoa, but are missing in Hydra, a member of the class Hydrozoa, indicating ancient origins for many components of the innate immune system
On the Evolution of the Velocity-Mass-Size Relations of Disk-Dominated Galaxies over the Past 10 Billion Years
We study the evolution of the scaling relations between maximum circular
velocity, stellar mass and optical half-light radius of star-forming
disk-dominated galaxies in the context of LCDM-based galaxy formation models.
Using data from the literature combined with new data from the DEEP2 and AEGIS
surveys we show that there is a consistent observational and theoretical
picture for the evolution of these scaling relations from z\sim 2 to z=0. The
evolution of the observed stellar scaling relations is weaker than that of the
virial scaling relations of dark matter haloes, which can be reproduced, both
qualitatively and quantitatively, with a simple, cosmologically-motivated model
for disk evolution inside growing NFW dark matter haloes. In this model optical
half-light radii are smaller, both at fixed stellar mass and maximum circular
velocity, at higher redshifts. This model also predicts that the scaling
relations between baryonic quantities evolve even more weakly than the
corresponding stellar relations. We emphasize, though, that this weak evolution
does not imply that individual galaxies evolve weakly. On the contrary,
individual galaxies grow strongly in mass, size and velocity, but in such a way
that they move largely along the scaling relations. Finally, recent
observations have claimed surprisingly large sizes for a number of star-forming
disk galaxies at z \sim 2, which has caused some authors to suggest that high
redshift disk galaxies have abnormally high spin parameters. However, we argue
that the disk scale lengths in question have been systematically overestimated
by a factor \sim 2, and that there is an offset of a factor \sim 1.4 between
H\alpha sizes and optical sizes. Taking these effects into account, there is no
indication that star forming galaxies at high redshifts (z\sim 2) have
abnormally high spin parameters.Comment: 19 pages, 10 figures, accepted to MNRAS, minor changes to previous
versio
Less Minimal Flavour Violation
We consider the approximate U(2)^3 flavour symmetry exhibited by the quark
sector of the Standard Model and all its possible breaking terms appearing in
the quark Yukawa couplings. Taking an Effective Field Theory point of view, we
determine the current bounds on these parameters, assumed to control the
breaking of flavour in a generic extension of the Standard Model at a reference
scale Lambda. In particular, a significant bound from epsilon'/epsilon is
derived, which is relevant to Minimal Flavour Violation as well. In the
up-quark sector, the recently observed CP violation in D -> pi+ pi-, K+ K-
decays might be accounted for in this generic framework, consistently with any
other constraint.Comment: 15 pages, 1 figur
The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design, Data Processing, and Spectral Analysis Methods
We present the survey design, data reduction, and spectral fitting pipeline
for the VIRUS-P Exploration of Nearby Galaxies (VENGA). VENGA is an integral
field spectroscopic survey, which maps the disks of 30 nearby spiral galaxies.
Targets span a wide range in Hubble type, star formation activity, morphology,
and inclination. The VENGA data-cubes have 5.6'' FWHM spatial resolution, ~5A
FWHM spectral resolution, sample the 3600A-6800A range, and cover large areas
typically sampling galaxies out to ~0.7 R_25. These data-cubes can be used to
produce 2D maps of the star formation rate, dust extinction, electron density,
stellar population parameters, the kinematics and chemical abundances of both
stars and ionized gas, and other physical quantities derived from the fitting
of the stellar spectrum and the measurement of nebular emission lines. To
exemplify our methods and the quality of the data, we present the VENGA
data-cube on the face-on Sc galaxy NGC 628 (a.k.a. M 74). The VENGA
observations of NGC 628 are described, as well as the construction of the
data-cube, our spectral fitting method, and the fitting of the stellar and
ionized gas velocity fields. We also propose a new method to measure the
inclination of nearly face-on systems based on the matching of the stellar and
gas rotation curves using asymmetric drift corrections. VENGA will measure
relevant physical parameters across different environments within these
galaxies, allowing a series of studies on star formation, structure assembly,
stellar populations, chemical evolution, galactic feedback, nuclear activity,
and the properties of the interstellar medium in massive disk galaxies.Comment: Accepted for publication in AJ, 25 pages, 18 figures, 6 table
- …