17 research outputs found

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Congruent strategies for carbohydrate sequencing. 3. OSCAR: An algorithm for assigning oligosaccharide topology from MSn data

    No full text
    This is the third in a sequence of reports devoted to the development of congruent strategies for carbohydrate sequencing. Two previous reports outlined the strategies for observing structural detail from MSn data and introduced tools that compile, search, and compare fragment spectra in a bottom-up approach to oligosaccharide sequencing. In this third report, we. introduce the operational details of an algorithm that we define as the Oligosaccharide Subtree Constraint Algorithm (OSCAR). This algorithm assimilates analyst-selected MSn ion fragmentation pathways into oligosaccharide topology (branching and linkage) using what may be considered a top-down sequencing strategy. Guided by a series of logical constraints, this de novo algorithm provides molecular topology without presumed biosynthetic constraints or external comparisons. In this introductory study, OSCAR is applied to a series of permethylated oligomers and isomeric glycans, and topologies are assigned in a few hundredths of a second

    Electrospray Ionization (ESI) Fragmentations and Dimethyldioxirane Reactivities of Three Diverse Lactams Having Full, Half, and Zero Resonance Energies

    No full text
    Three lactams having, respectively, ∼20, ∼10, and 0 kcal/mol of resonance energy have been subjected to electrospray ionization mass spectrometry (ESI/MS) as well as to attempted reaction with dimethyldioxirane (DMDO). The ESI/MS for all three lactams are consistent with fragmentation from the N-protonated, rather than the O-protonated tautomer. Each exhibits a unique fragmentation pathway. DFT calculations are employed to provide insights concerning these pathways. <i>N</i>-Ethyl-2-pyrrolidinone and 1-azabicyclo­[3.3.1]­nonan-2-one, the full- and half-resonance lactams, are unreactive with DMDO. The “Kirby lactam” (3,5,7-trimethyl-1-azaadamantan-2-one) has zero resonance energy and reacts rapidly with DMDO to generate a mixture of reaction products. The structure assigned to one of these is the 2,2-dihydroxy-<i>N</i>-oxide, thought to be stabilized by intramolecular hydrogen bonding and buttressing by the methyl substituents. A reasonable pathway to this derivative might involve formation of an extremely labile <i>N</i>-oxide, in a purely formal sense, an example of the hitherto-unknown amide <i>N</i>-oxides, followed by hydration with traces of moisture

    Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins

    No full text
    Chronic liver diseases are a serious health problem worldwide. One of the frequently reported glycan alterations in liver disease is aberrant fucosylation, which was suggested as a marker for noninvasive serologic monitoring. We present a case study that compares site specific glycoforms of four proteins including haptoglobin, complement factor H, kininogen-1, and hemopexin isolated from the same patient. Our exoglycosidase-assisted LC–MS/MS analysis confirms the high degree of fucosylation of some of the proteins but shows that microheterogeneity is protein- and site-specific. MSn analysis of permethylated detached glycans confirms the presence of LeY glycoforms on haptoglobin, which cannot be detected in hemopexin or complement factor H; all three proteins carry Lewis and H epitopes. Core fucosylation is detectable in only trace amounts in haptoglobin but with confidence on hemopexin and complement factor H, where core fucosylation of the bi-antennary glycans on select glycopeptides reaches 15–20% intensity. These protein-specific differences in fucosylation, observed in proteins isolated from the same patient source, suggest that factors other than up-regulation of enzymatic activity regulate the microheterogeneity of glycoforms. This has implications for selection of candidate proteins for disease monitoring and suggests that site-specific glycoforms have structural determinants, which could lead to functional consequences for specific subsets of proteins or their domains
    corecore