1,110 research outputs found

    Critical point for the strong field magnetoresistance of a normal conductor/perfect insulator/perfect conductor composite with a random columnar microstructure

    Full text link
    A recently developed self-consistent effective medium approximation, for composites with a columnar microstructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and perfect conductor, where a strong magnetic field {\bf B} is present in the plane perpendicular to the columnar axis. When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-induced in-plane magnetoresistance is found to saturate for large {\bf B}, if the volume fraction of the perfect conductor pSp_S is greater than that of the perfect insulator pIp_I. By contrast, if pS<pIp_S<p_I, that magnetoresistance keeps increasing as B2{\bf B}^2 without ever saturating. This abrupt change in the macroscopic response, which occurs when pS=pIp_S=p_I, is a critical point, with the associated critical exponents and scaling behavior that are characteristic of such points. The physical reasons for the singular behavior of the macroscopic response are discussed. A new type of percolation process is apparently involved in this phenomenon.Comment: 4 pages, 1 figur

    High field magnetotransport in composite conductors: the effective medium approximation revisited

    Full text link
    The self consistent effective medium approximation (SEMA) is used to study three-dimensional random conducting composites under the influence of a strong magnetic field {\bf B}, in the case where all constituents exhibit isotropic response. Asymptotic analysis is used to obtain almost closed form results for the strong field magnetoresistance and Hall resistance in various types of two- and three-constituent isotropic mixtures for the entire range of compositions. Numerical solutions of the SEMA equations are also obtained, in some cases, and compared with those results. In two-constituent free-electron-metal/perfect-insulator mixtures, the magnetoresistance is asymptotically proportional to ∣B∣|{\bf B}| at {\em all concentrations above the percolation threshold}. In three-constituent metal/insulator/superconductor mixtures a line of critical points is found, where the strong field magnetoresistance switches abruptly from saturating to non-saturating dependence on ∣B∣|{\bf B}|, at a certain value of the insulator-to-superconductor concentration ratio. This transition appears to be related to the phenomenon of anisotropic percolation.Comment: 16 pages, 3 figure

    Grackles

    Get PDF
    Numbering in the tens of millions of birds, grackle populations in North America can cause a variety of conflicts with people. Grackles eat agricultural crops and livestock feed, damage property, spread pathogens, and collide with aircraft. Their large roosts can be a nuisance in urban and suburban areas. A combination of dispersal techniques, exclusion, and lethal removal may help to reduce grackle damage. Grackles adapt easily to human-dominated environments, and exploit human food and other features of human landscapes. Thus, an integrated damage management approach to grackle damage focuses on reducing and eliminating the damage, rather than simply controlling grackle populations. Three species of grackles are present in North America: the common grackle, the boat-tailed grackle, and the great-tailed grackle. A fourth species, the greater Antillean grackle (Q. niger) is present in Puerto Rico. All are part of the Family Icteridae that includes blackbirds, orioles, cowbirds, meadowlarks, and bobolinks. The population status of all three grackle species is considered common to overabundant

    New Method to Calculate Electrical Forces Acting on a Sphere in an Electrorheological Fluid

    Get PDF
    We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate multi-body as well as pairwise forces. We also present several numerical examples, including host fluids with finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also change sign as a function of frequency when the host is a slightly conducting fluid.Comment: 29 pages, 8 figures, Accepted for Publication in Physical Review

    Magnetoresistance of Three-Constituent Composites: Percolation Near a Critical Line

    Full text link
    Scaling theory, duality symmetry, and numerical simulations of a random network model are used to study the magnetoresistance of a metal/insulator/perfect conductor composite with a disordered columnar microstructure. The phase diagram is found to have a critical line which separates regions of saturating and non-saturating magnetoresistance. The percolation problem which describes this line is a generalization of anisotropic percolation. We locate the percolation threshold and determine the t = s = 1.30 +- 0.02, nu = 4/3 +- 0.02, which are the same as in two-constituent 2D isotropic percolation. We also determine the exponents which characterize the critical dependence on magnetic field, and confirm numerically that nu is independent of anisotropy. We propose and test a complete scaling description of the magnetoresistance in the vicinity of the critical line.Comment: Substantially revised version; description of behavior in finite magnetic fields added. 7 pages, 7 figures, submitted to PR

    Grackles

    Get PDF
    Numbering in the tens of millions of birds, grackle populations in North America can cause a variety of conflicts with people. Grackles eat agricultural crops and livestock feed, damage property, spread pathogens, and collide with aircraft. Their large roosts can be a nuisance in urban and suburban areas. A combination of dispersal techniques, exclusion, and lethal removal may help to reduce grackle damage. Grackles adapt easily to human-dominated environments, and exploit human food and other features of human landscapes. Thus, an integrated damage management approach to grackle damage focuses on reducing and eliminating the damage, rather than simply controlling grackle populations. Three species of grackles are present in North America: the common grackle, the boat-tailed grackle, and the great-tailed grackle. A fourth species, the greater Antillean grackle (Q. niger) is present in Puerto Rico. All are part of the Family Icteridae that includes blackbirds, orioles, cowbirds, meadowlarks, and bobolinks. The population status of all three grackle species is considered common to overabundant
    • …
    corecore