15 research outputs found

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    Get PDF
    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields

    Principle component plots of individual accessions characterised by 29 nuSSRs.

    No full text
    <p>In the upper panel, samples were coloured according to form (black: wild emmer; dark green: bread wheat; light green: emmer; dark red: rivet; red: durum). In the lower panel, samples were coloured according to membership to one of the six groups defined by STRUCTURE under the <i>K</i> = 6 model.</p

    Measures of within-landrace genetic diversity in seven tetraploid wheat accessions.

    No full text
    <p>No. Genotypes: number of different genotypes detected in the sample; Freq. Genotypes: number of individual plants with a particular genotype within the sample; Hz: Heterozygosity; GD: Gene Diversity; PIC: polymorphism information content; M/P markers: number of polymorphic/monomorphic markers; Rare Alleles: number of rare alleles (an allele other than the most frequent one for each loci analysed) detected in the landrace (the total number of alleles detected for each landrace accession is under brackets); Hg (%): heterogeneity within varieties calculated as the number of alleles, other than the most frequent one, detected for a particular marker/landrace combination, considering the totality of alleles genotyped. e.g. for Recio, given 20 individuals analysed at 15 SSR loci, there is 1 instances of a rare allele being detected, so heterogeneity is 0.34%.</p

    Neighbour-joining tree between <i>a priori</i> defined tetraploid wheat populations.

    No full text
    <p>The tree was constructed from <i>D<sub>C</sub></i> genetic distances using wild emmer to root the tree and 100 bootstrap replicates.</p
    corecore