5 research outputs found
Interfacial and distal-heme pocket mutations exhibit additive effects on the structure and function of hemoglobin.
Protein engineering strategies seek to develop a hemoglobin-based oxygen carrier with optimized functional properties, including (i) an appropriate O 2 affinity, (ii) high cooperativity, (iii) limited NO reactivity, and (iv) a diminished rate of auto-oxidation. The mutations alphaL29F, alphaL29W, alphaV96W and betaN108K individually impart some of these traits and in combinations produce hemoglobin molecules with interesting ligand-binding and allosteric properties. Studies of the ligand-binding properties and solution structures of single and multiple mutants have been performed. The aromatic side chains placed in the distal-heme pocket environment affect the intrinsic ligand-binding properties of the mutated subunit itself, beyond what can be explained by allostery, and these changes are accompanied by local structural perturbations. In contrast, hemoglobins with mutations in the alpha 1beta 1 and alpha 1beta 2 interfaces display functional properties of both "R"- and "T"-state tetramers because the equilibrium between quaternary states is altered. These mutations are accompanied by global structural perturbations, suggesting an indirect, allostery-driven cause for their effects. Combinations of the distal-heme pocket and interfacial mutations exhibit additive effects in both structural and functional properties, contribute to our understanding of allostery, and advance protein-engineering methods for manipulating the O 2 binding properties of the hemoglobin molecule.</p
Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the αVal-62 or βVal-67 position of the distal heme pocket.
<p>The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. (1)H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207-7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin.</p