2,521 research outputs found

    Force distributions in a triangular lattice of rigid bars

    Full text link
    We study the uniformly weighted ensemble of force balanced configurations on a triangular network of nontensile contact forces. For periodic boundary conditions corresponding to isotropic compressive stress, we find that the probability distribution for single-contact forces decays faster than exponentially. This super-exponential decay persists in lattices diluted to the rigidity percolation threshold. On the other hand, for anisotropic imposed stresses, a broader tail emerges in the force distribution, becoming a pure exponential in the limit of infinite lattice size and infinitely strong anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and acknowledgmen

    A habituation account of change detection in same/different judgments

    Get PDF
    We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation

    Vesicle shape, molecular tilt, and the suppression of necks

    Full text link
    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2+2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.Comment: 10 pages, 7 figures, submitted to Phy. Rew.

    MOST photometry of the RRd Lyrae variable AQ Leo: Two radial modes, 32 combination frequencies, and beyond

    Get PDF
    Highly precise and nearly uninterrupted optical photometry of the RR Lyrae star AQ Leo was obtained with the MOST (Microvariability & Oscillations of STars) satellite over 34.4 days in February-March 2005. AQ Leo was the first known double-mode RR Lyrae pulsator (RRd star). Three decades after its discovery, MOST observations have revealed that AQ Leo oscillates with at least 42 frequencies, of which 32 are linear combinations (up to the sixth order) of the radial fundamental mode and its first overtone. Evidence for period changes of these modes is found in the data. The other intrinsic frequencies may represent an additional nonradial pulsation mode and its harmonics (plus linear combinations) which warrant theoretical modeling. The unprecedented number of frequencies detected with amplitudes down to millimag precision also presents an opportunity to test nonlinear theories of mode growth and saturation in RR Lyrae pulsators.Comment: accepted for publication in MNRAS; revision v2 : broken references have been fixe

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region

    Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS

    Full text link
    A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 µg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55964/1/1163_ftp.pd

    Kepler-432: a red giant interacting with one of its two long period giant planets

    Get PDF
    We report the discovery of Kepler-432b, a giant planet (Mb=5.410.18+0.32MJup,Rb=1.1450.039+0.036RJupM_b = 5.41^{+0.32}_{-0.18} M_{\rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{\rm Jup}) transiting an evolved star (M=1.320.07+0.10M,R=4.060.08+0.12R)(M_\star = 1.32^{+0.10}_{-0.07} M_\odot, R_\star = 4.06^{+0.12}_{-0.08} R_\odot) with an orbital period of Pb=52.5011290.000053+0.000067P_b = 52.501129^{+0.000067}_{-0.000053} days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.51340.0089+0.0098e = 0.5134^{+0.0098}_{-0.0089}, which we also measure independently with asterodensity profiling (AP; e=0.5070.114+0.039e=0.507^{+0.039}_{-0.114}), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; Mcsinic=2.430.24+0.22MJup,Pc=406.22.5+3.9M_c \sin{i_c} = 2.43^{+0.22}_{-0.24} M_{\rm Jup}, P_c = 406.2^{+3.9}_{-2.5} days), and adaptive optics imaging revealed a nearby (0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015 (submitted Nov 11, 2014). Updated with minor changes to match published versio

    Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets

    Full text link
    The effect of site dilution by non magnetic impurities on the susceptibility of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices) is discussed in the framework of the Generalized Constant Coupling model, for both classical and quantum Heisenberg spins. For the classical diluted pyrochlore lattice, excellent agreement is found when compared with Monte Carlo data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure

    lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers

    Full text link
    We assume data sampled from a mixture of d-dimensional linear subspaces with spherically symmetric distributions within each subspace and an additional outlier component with spherically symmetric distribution within the ambient space (for simplicity we may assume that all distributions are uniform on their corresponding unit spheres). We also assume mixture weights for the different components. We say that one of the underlying subspaces of the model is most significant if its mixture weight is higher than the sum of the mixture weights of all other subspaces. We study the recovery of the most significant subspace by minimizing the lp-averaged distances of data points from d-dimensional subspaces, where p>0. Unlike other lp minimization problems, this minimization is non-convex for all p>0 and thus requires different methods for its analysis. We show that if 0<p<=1, then for any fraction of outliers the most significant subspace can be recovered by lp minimization with overwhelming probability (which depends on the generating distribution and its parameters). We show that when adding small noise around the underlying subspaces the most significant subspace can be nearly recovered by lp minimization for any 0<p<=1 with an error proportional to the noise level. On the other hand, if p>1 and there is more than one underlying subspace, then with overwhelming probability the most significant subspace cannot be recovered or nearly recovered. This last result does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1 and for estimates relying on it), asymptotic dependence of probabilities and constants on D and d and further clarifications; for simplicity it assumes uniform distributions on spheres. V4: minor revision for the published versio

    Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star

    Get PDF
    We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.630.20+0.23^{+0.23}_{-0.20} R_\oplus planet orbits its G2 host star every 384.8430.012+0.007^{+0.007}_{0.012} days, the longest orbital period for a small (Rp_p < 2 R_\oplus) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757±\pm85 K and a log g of 4.32±\pm0.09. At a mean orbital separation of 1.0460.015+0.019^{+0.019}_{-0.015} AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.110.09+0.15^{+0.15}_{-0.09} R_\odot and an estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another 3 Gyr.Comment: 19 pages, 16 figure
    corecore