257 research outputs found

    Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans

    Get PDF
    The superoxide radical (O-2(-)) has long been considered a major cause of aging. O-2(-) in cytosolic, extracellular, and mitochondrial pools is detoxified by dedicated superoxide dismutase (SOD) isoforms. We tested the impact of each SOD isoform in Caenorhabditis elegans by manipulating its five sod genes and saw no major effects on life span. sod genes are not required for daf-2 insulin/IGF-1 receptor mutant longevity. However, loss of the extracellular Cu/ZnSOD sod-4 enhances daf-2 longevity and constitutive diapause, suggesting a signaling role for sod-4. Overall, these findings imply that O-2(-) is not a major determinant of aging in C. elegans

    Transformation and Development of Aspergillus nidulans

    Get PDF
    The main aim of the study of the molecular genetics of development in Aspergillus nidulans is to understand how master genes orchestrate the expression of large numbers of genes which determine development. brIA has been shown to be one master gene in the development of the head of the conidiophore (asexual reproductive apparatus) (Clutterbuck 1969; 1977; Boylan et al., 1987; Adams et al., 1988)

    Biological Constraint as a Cause of Aging

    Get PDF
    Aging rate differs greatly between species, indicating that the process of senescence is largely genetically determined. Senescence evolves in part due to antagonistic pleiotropy (AP), where selection favors gene variants that increase fitness earlier in life but promote pathology later. Identifying the biological mechanisms by which AP causes senescence is key to understanding the endogenous causes of aging and its attendant diseases. Here we argue that the frequent occurrence of AP as a property of genes reflects the presence of constraint in the biological systems that they specify. This arises particularly because the functionally interconnected nature of biological systems constrains the simultaneous optimization of coupled traits (interconnection constraints), or because individual traits cannot evolve (impossibility constraints). We present an account of aging that integrates AP and biological constraint with recent programmatic aging concepts, including costly programs, quasi-programs, hyperfunction and hypofunction. We argue that AP mechanisms of costly programs and triggered quasi-programs are consequences of constraint, in which costs resulting from hyperfunction or hypofunction cause senescent pathology. Impossibility constraint can also cause hypofunction independently of AP. We also describe how AP corresponds to Stephen Jay Gould’s constraint-based concept of evolutionary spandrels, and argue that pathologies arising from AP are bad spandrels. Biological constraint is a missing link between ultimate and proximate causes of senescence, including diseases of aging. That this was not realized previously may reflect a combination of hyperadaptationism among evolutionary biologists, and the erroneous assumption by biogerontologists that molecular damage accumulation is the principal primary cause of aging

    Treating aging: progress toward dietary restriction mimetics

    Get PDF
    During the last decade, biogerontologists have labored to understand the biological basis of the aging process by studying the genes and signaling pathways that regulate it. But the last year has seen a breakthrough in a different direction: toward treatments that might slow aging by mimicking the effects of dietary restriction

    Semelparous Death as one Element of Iteroparous Aging Gone Large

    Get PDF
    The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging

    Is "cellular senescence" a misnomer?

    Get PDF
    One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype)

    Epigenetic clocks and programmatic aging

    Get PDF
    The last decade has seen remarkable progress in the characterization of methylation clocks that can serve as indicators of biological age in humans and many other mammalian species. While the biological processes of aging that underlie these clocks have remained unclear, several clues have pointed to a link to developmental mechanisms. These include the presence in the vicinity of clock CpG sites of genes that specify development, including those of the Hox (homeobox) and polycomb classes. Here we discuss how recent advances in programmatic theories of aging provide a framework within which methylation clocks can be understood as part of a developmental process of aging. This includes how such clocks evolve, how developmental mechanisms cause aging, and how they give rise to late-life disease. The combination of ideas from evolutionary biology, biogerontology and developmental biology open a path to a new discipline, that of developmental gerontology (devo-gero). Drawing on the properties of methylation clocks, we offer several new hypotheses that exemplify devo-gero thinking. We suggest that polycomb controls a trade-off between earlier developmental fidelity and later developmental plasticity. We also propose the existence of an evolutionarily-conserved developmental sequence spanning ontogenesis, adult development and aging, that both constrains and determines the evolution of aging

    Worms need microbes too: microbiota, health and aging in<i>Caenorhabditis elegans</i>

    Get PDF
    Many animal species live in close association with commensal and symbiotic microbes (microbiota). Recent studies have revealed that the status of gastrointestinal tract microbiota can influence nutrition-related syndromes such as obesity and type-2 diabetes, and perhaps aging. These morbidities have a profound impact in terms of individual suffering, and are an increasing economic burden to modern societies. Several theories have been proposed for the influence of microbiota on host metabolism, but these largely remain to be proven. In this article we discuss how microbiota may be manipulated (via pharmacology, diet, or gene manipulation) in order to alter metabolism, immunity, health and aging in the host. The nematode Caenorhabditis elegans in combination with one microbial species is an excellent, defined model system to investigate the mechanisms of host–microbiota interactions, particularly given the combined power of worm and microbial genetics. We also discuss the multifaceted nature of the worm–microbe relationship, which likely encompasses predation, commensalism, pathogenicity and necromeny

    Autophagy promotes visceral aging in wild-type C. elegans

    Get PDF
    A plethora of studies over several decades has demonstrated the importance of autophagy in aging and age-related neurodegenerative disease. The role of autophagy in damage clearance and cell survival is well established, and supports a prevailing view that increasing autophagic activity can be broadly beneficial, and could form the basis of anti-aging interventions. However, macroautophagy/autophagy also promotes some elements of senescence. For example, in C. elegans hermaphrodites it facilitates conversion of intestinal biomass into yolk, leading to sex-specific gut atrophy and senescent steatosis
    corecore