2,270 research outputs found
What’s it worth to you? Applying risk tradeoff paradigms to explain user interactions with interruptive security messages
Attacks on information security continue to result in large losses for organizations. Oftentimes, the breaches occur because organizational insiders fail to adhere to commonplace system security messages. This could be because, faced with the challenges and time demands of everyday stressors, security policy compliance can be costly for individuals; security actions require time and distract attention from other primary tasks. To defend against these attacks, user interactions with security messages need to be better understood.
This study reports the results of a 110-participant MTurk field study that examines user interactions with interruptive security messages through the lens of a risk tradeoff paradigm. First, a gap in the information security literature is identified, wherein findings about low security-message attention are contrasted against studies that assume attention and information processing. Three competing hypotheses are proposed that describe different patterns of risk analysis that users may engage in when interacting with an interruptive security message: (1) very little to no elaboration over the risk-taking decision due to perniciously low attention, (2) consistent security message risk-taking decision elaboration, and (3) a bimodal situation where elaboration depends on the information security risk-reward tradeoff balance. Multiple behavioral dependent variables are corroborated to support the third hypothesis, suggesting the existence of a bimodal risk tradeoff paradigm for user interactions with interruptive security messages. The relevance of the findings for research and practice are discussed
Resonance energy transfer: The unified theory revisited
Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate
Biliary Duct Granular Cell Tumor: A Rare But Surgically Curable Benign Tumor
Granulosa cell tumors are rare benign tumors which may be found throughout the body. Rare cases are
isolated within the biliary tree. If completely resected, surgical excision is curative
Long-lived space observatories for astronomy and astrophysics
NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about 160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given
A photonic basis for deriving nonlinear optical response
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as coefficients in a power series - nonlinear optical susceptibilities signifying a propensity to generate optical harmonics, for example. Taking the subject to a deeper level requires a more detailed knowledge of the structure and properties of each nonlinear susceptibility tensor, the latter differing in form according to the process under investigation. Typically, the derivations involve intricate development based on time-dependent perturbation theory, assisted by recourse to a set of Feynman diagrams. This paper presents a more direct route to the required results, based on photonic rather than semiclassical principles, and offers a significantly clearer perspective on the photophysics underlying nonlinear optical response. The method, here illustrated by specific application to harmonic generation and down-conversion processes, is simple, intuitive and readily amenable for processes of arbitrary photonic order. © 2009 IOP Publishing Ltd
Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2γ (iPLA2γ) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size
Calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA(2)γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA(2)γ knock-out (CMiPLA(2)γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA(2)γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA(2)γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA(2)γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA(2)γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA(2)γ, these results are consistent with salvage of myocardium after I/R by iPLA(2)γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion
Kepler Observations of Transiting Hot Compact Objects
Kepler photometry has revealed two unusual transiting companions orbiting an
early A-star and a late B-star. In both cases the occultation of the companion
is deeper than the transit. The occultation and transit with follow-up optical
spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a
companion in a 5.2 day orbit with a radius of 0.08 Rsun and a 10000 K late
B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a
radius of 0.2 Rsun. We infer a temperature of 12250 K for KOI-74b and 13500 K
for KOI-81b.
We present 43 days of high duty cycle, 30 minute cadence photometry, with
models demonstrating the intriguing properties of these object, and speculate
on their nature.Comment: 12 pages, 3 figures, submitted to ApJL (updated to correct KOI74
lightcurve
Recommended from our members
Kepler-4B: A Hot Neptune-Like Planet of A G0 Star Near Main-Sequence Turnoff
Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size.W. M. Keck FoundationNASA's Science Mission DirectorateAstronom
Kepler Mission Stellar and Instrument Noise Properties
Kepler Mission results are rapidly contributing to fundamentally new
discoveries in both the exoplanet and asteroseismology fields. The data
returned from Kepler are unique in terms of the number of stars observed,
precision of photometry for time series observations, and the temporal extent
of high duty cycle observations. As the first mission to provide extensive time
series measurements on thousands of stars over months to years at a level
hitherto possible only for the Sun, the results from Kepler will vastly
increase our knowledge of stellar variability for quiet solar-type stars. Here
we report on the stellar noise inferred on the timescale of a few hours of most
interest for detection of exoplanets via transits. By design the data from
moderately bright Kepler stars are expected to have roughly comparable levels
of noise intrinsic to the stars and arising from a combination of fundamental
limitations such as Poisson statistics and any instrument noise. The noise
levels attained by Kepler on-orbit exceed by some 50% the target levels for
solar-type, quiet stars. We provide a decomposition of observed noise for an
ensemble of 12th magnitude stars arising from fundamental terms (Poisson and
readout noise), added noise due to the instrument and that intrinsic to the
stars. The largest factor in the modestly higher than anticipated noise follows
from intrinsic stellar noise. We show that using stellar parameters from
galactic stellar synthesis models, and projections to stellar rotation,
activity and hence noise levels reproduces the primary intrinsic stellar noise
features.Comment: Accepted by ApJ; 26 pages, 20 figure
- …