178 research outputs found

    Osteopontin Expression during Early Cerebral Ischemia-Reperfusion in Rats: Enhanced Expression in the Right Cortex Is Suppressed by Acetaminophen

    Get PDF
    Osteopontin (OPN) is a pleiotropic protein implicated in various inflammatory responses including ischemia-reperfusion (I-R) injury. Two distinct forms of the protein have been identified: an extensively studied secreted form (sOPN) and a less-well-known intracellular form (iOPN). Studies have shown that increased OPN expression parallels the time course of macrophage infiltration into injured tissue, a late event in the development of cerebral infarcts. sOPN has been suggested to promote remodeling of the extracellular matrix in the brain; the function of iOPN may be to facilitate certain signal transduction processes. Here, we studied OPN expression in adult male Sprague-Dawley rats subjected to global forebrain I-R injury. We found iOPN in the cytoplasm of both cortices and the hippocampus, but unexpectedly only the right cortex exhibited a marked increase in the iOPN level after 45 min of reperfusion. Acetaminophen, a drug recently shown to decrease apoptotic incidence, caspase-9 activation, and mitochondrial dysfunction during global I-R, significantly inhibited the increase in iOPN protein in the right cortex, suggesting a role for iOPN in the response to I-R injury in the right cortex

    Osteopontin as a Mediator of NKT Cell Function in T Cell-Mediated Liver Diseases

    Get PDF
    AbstractBoth osteopontin (OPN) and natural killer T (NKT) cells play a role in the development of immunological disorders. We examined a functional link between OPN and NKT cells. Concanavalin A (Con A)-induced hepatitis is a well-characterized murine model of T cell-mediated liver diseases. Here, we show that NKT cells secrete OPN, which augments NKT cell activation and triggers neutrophil infiltration and activation. Thus, OPN- and NKT cell-deficient mice were refractory to Con A-induced hepatitis. In addition, a neutralizing antibody specific for a cryptic epitope of OPN, exposed by thrombin cleavage, ameliorated hepatitis. These findings identify NKT cell-derived OPN as a novel target for the treatment of inflammatory liver diseases

    Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure

    Get PDF
    Aberrant activation of the translation initiation machinery is a common property of malignant cells, and is essential for breast carcinoma cells to manifest a malignant phenotype. How does sustained activation of the rate limiting step in protein synthesis so fundamentally alter a cell? In this report, we test the post transcriptional operon theory as a possible mechanism, employing a model system in which apoptosis resistance is conferred on NIH 3T3 cells by ectopic expression of eIF4E. We show (i) there is a set of 255 transcripts that manifest an increase in translational efficiency during eIF4E-mediated escape from apoptosis; (ii) there is a novel prototype 55 nt RNA consensus hairpin structure that is overrepresented in the 5′-untranslated region of translationally activated transcripts; (iii) the identified consensus hairpin structure is sufficient to target a reporter mRNA for translational activation under pro-apoptotic stress, but only when eIF4E is deregulated; and (iv) that osteopontin, one of the translationally activated transcripts harboring the identified consensus hairpin structure functions as one mediator of the apoptosis resistance seen in our model. Our findings offer genome-wide insights into the mechanism of eIF4E-mediated apoptosis resistance and provide a paradigm for the systematic study of posttranscriptional control in normal biology and disease

    Osteopontin Impairs Host Defense during Established Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis)

    Get PDF
    Melioidosis is a severe tropical disease caused by infection with the bacterium Burkholderia (B.) pseudomallei. In northeast Thailand infection with this bacterium is the major cause of community-acquired septicemia with a mortality rate up to 40%. Extending the knowledge on the mechanisms of host defense against B. pseudomallei infection would be helpful to improve treatment of this severe illness. Osteopontin (OPN) is a cytokine that is involved in several immune responses that occur during bacterial infection. In this study, we investigated levels of OPN in patients with melioidosis, and studied the function of OPN during experimental melioidosis in mice. We found that OPN concentrations were elevated in patients with severe melioidosis, and that high OPN concentrations are associated with poor outcome in patients with melioidosis. In experimental melioidosis in mice plasma and lung OPN levels were also increased. Moreover, mice with melioidosis that were deficient for OPN demonstrated reduced bacterial numbers in their lungs, diminished pulmonary tissue injury, and decreased neutrophil infiltration into the lungs during established melioidosis. Moreover, these mice displayed a delayed mortality as compared to control mice. In conclusion, sustained production of OPN impairs host defense during melioidosis

    Computational Models of the Notch Network Elucidate Mechanisms of Context-dependent Signaling

    Get PDF
    The Notch signaling pathway controls numerous cell fate decisions during development and adulthood through diverse mechanisms. Thus, whereas it functions as an oscillator during somitogenesis, it can mediate an all-or-none cell fate switch to influence pattern formation in various tissues during development. Furthermore, while in some contexts continuous Notch signaling is required, in others a transient Notch signal is sufficient to influence cell fate decisions. However, the signaling mechanisms that underlie these diverse behaviors in different cellular contexts have not been understood. Notch1 along with two downstream transcription factors hes1 and RBP-Jk forms an intricate network of positive and negative feedback loops, and we have implemented a systems biology approach to computationally study this gene regulation network. Our results indicate that the system exhibits bistability and is capable of switching states at a critical level of Notch signaling initiated by its ligand Delta in a particular range of parameter values. In this mode, transient activation of Delta is also capable of inducing prolonged high expression of Hes1, mimicking the “ON” state depending on the intensity and duration of the signal. Furthermore, this system is highly sensitive to certain model parameters and can transition from functioning as a bistable switch to an oscillator by tuning a single parameter value. This parameter, the transcriptional repression constant of hes1, can thus qualitatively govern the behavior of the signaling network. In addition, we find that the system is able to dampen and reduce the effects of biological noise that arise from stochastic effects in gene expression for systems that respond quickly to Notch signaling
    corecore