1,370 research outputs found

    Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes

    Get PDF
    When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field EE, which produces tidal forces, and the frame-drag field BB, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of EE) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes' horizon tendicity and vorticity (the normal-normal components of EE and BB on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon's intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities (EE, BB, the tendex lines and vortex lines, the lines' tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. [Abstract is abbreviated.]Comment: 19 pages, 7 figures, v2: Changed to reflect published version (changes made to color scales in Figs 5, 6, and 7 for consistent conventions). v3: Fixed Ref

    Evaluation of the Wellspring Model for Improving Nursing Home Quality

    Get PDF
    Examines how successfully the Wellspring model improved the quality of care for residents of eleven nonprofit nursing homes in Wisconsin. Looks at staff turnover, and evaluates the impact on facilities, employees, residents, and cost

    Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime

    Get PDF
    When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an "electric" part E_{jk} that describes tidal gravity and a "magnetic" part B_{jk} that describes differential dragging of inertial frames. We introduce tools for visualizing B_{jk} (frame-drag vortex lines, their vorticity, and vortexes) and E_{jk} (tidal tendex lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon's (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries.Comment: 4 pages, 5 figure

    MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.

    Get PDF
    peer-reviewedBovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per annum. Because disease susceptibility is a multi-factorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach, using next generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time-points (0, 12, 24, 36 and 48h) in both milk and blood FACS-isolated CD14+ monocytes from animals infected in vivo with Streptococcus uberis. More than 3,700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Up-regulated genes were significantly enriched for inflammatory pathways, while down-regulated genes were enriched for non-glycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes up-regulated in blood-isolated-monocytes (BIMs) showed a significant association with interferon and chemokine signalling. Furthermore, twenty-six miRNAs were differentially expressed in MIMs and three in BIMs. Pathway analysis revealed that predicted targets of down-regulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8) in particular TLR signalling, while up-regulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways.This study was funded in part by Teagasc RMIS 6018 and United States Department of Agriculture ARS funding 3625-32000-102-00. NL is supported by a Teagasc Walsh Fellowship

    Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes III. Quasinormal Pulsations of Schwarzschild and Kerr Black Holes

    Get PDF
    In recent papers, we and colleagues have introduced a way to visualize the full vacuum Riemann curvature tensor using frame-drag vortex lines and their vorticities, and tidal tendex lines and their tendicities. We have also introduced the concepts of horizon vortexes and tendexes and 3-D vortexes and tendexes (regions where vorticities or tendicities are large). Using these concepts, we discover a number of previously unknown features of quasinormal modes of Schwarzschild and Kerr black holes. These modes can be classified by mode indexes (n,l,m), and parity, which can be electric [(-1)^l] or magnetic [(-1)^(l+1)]. Among our discoveries are these: (i) There is a near duality between modes of the same (n,l,m): a duality in which the tendex and vortex structures of electric-parity modes are interchanged with the vortex and tendex structures (respectively) of magnetic-parity modes. (ii) This near duality is perfect for the modes' complex eigenfrequencies (which are well known to be identical) and perfect on the horizon; it is slightly broken in the equatorial plane of a non-spinning hole, and the breaking becomes greater out of the equatorial plane, and greater as the hole is spun up; but even out of the plane for fast-spinning holes, the duality is surprisingly good. (iii) Electric-parity modes can be regarded as generated by 3-D tendexes that stick radially out of the horizon. As these "longitudinal," near-zone tendexes rotate or oscillate, they generate longitudinal-transverse near-zone vortexes and tendexes, and outgoing and ingoing gravitational waves. The ingoing waves act back on the longitudinal tendexes, driving them to slide off the horizon, which results in decay of the mode's strength. (iv) By duality, magnetic-parity modes are driven in this same manner by longitudinal, near-zone vortexes that stick out of the horizon. [Abstract abridged.]Comment: 53 pages with an overview of major results in the first 11 pages, 26 figures. v2: Very minor changes to reflect published version. v3: Fixed Ref

    Ebullition of Oxygen From Seagrasses Under Supersaturated Conditions

    Get PDF
    Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m-2 h-1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m-2 d-1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem-scale estimates. Oxygen content comprised 20-40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here

    Ebullition of oxygen from seagrasses under supersaturated conditions

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW)

    New Evidence on the Green House Model of Nursing Home Care: Synthesis of Findings and Implications for Policy, Practice, and Research

    Get PDF
    OBJECTIVE: To synthesize new findings from the THRIVE Research Collaborative (The Research Initiative Valuing Eldercare) related to the Green House (GH) model of nursing home care and broadly consider their implications. DATA SOURCES: Interviews and observations conducted in GH and comparison homes, Minimum Data Set (MDS) assessments, Medicare data, and Online Survey, Certification and Reporting data. STUDY DESIGN: Critical integration and interpretation of findings based on primary data collected 2011-2014 in 28 GH homes (from 16 organizations), and 15 comparison nursing home units (from 8 organizations); and secondary data derived from 2005 to 2010 for 72 GH homes (from 15 organizations) and 223 comparison homes. PRINCIPAL FINDINGS: Implementation of the GH model is inconsistent, sometimes differing from design. Among residents of GH homes, adoption lowers hospital readmissions, three MDS measures of poor quality, and Part A/hospice Medicare expenditures. Some evidence suggests the model is associated with lower direct care staff turnover. CONCLUSIONS: Recommendations relate to assessing fidelity, monitoring quality, capitalizing opportunities to improve care, incorporating evidence-based practices, including primary care providers, supporting high-performance workforce practices, aligning Medicare financial incentives, promoting equity, informing broad culture change, and conducting future research

    Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime

    Get PDF
    When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an "electric" part E_{jk} that describes tidal gravity and a "magnetic" part B_{jk} that describes differential dragging of inertial frames. We introduce tools for visualizing B_{jk} (frame-drag vortex lines, their vorticity, and vortexes) and E_{jk} (tidal tendex lines, their tendicity, and tendexes), and also visualizations of a black-hole horizon's (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries.Comment: 4 pages, 5 figure
    corecore