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ABSTRACT 

 

Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that 

costs the global dairy industry several billion dollars per annum. Because disease 

susceptibility is a multi-factorial complex phenotype, an integrative biology approach 

is required to dissect the molecular networks involved. Here, we report such an 

approach, using next generation sequencing combined with advanced network and 

pathway biology methods to simultaneously profile mRNA and miRNA expression at 

multiple time-points (0, 12, 24, 36 and 48h) in both milk and blood FACS-isolated 

CD14+ monocytes from animals infected in vivo with Streptococcus uberis. More 

than 3,700 differentially expressed (DE) genes were identified in milk-isolated 

monocytes (MIMs), a key immune cell recruited to the site of infection during 

mastitis. Up-regulated genes were significantly enriched for inflammatory pathways, 

while down-regulated genes were enriched for non-glycolytic metabolic pathways. 

Monocyte transcriptional changes in the blood, however, were more subtle but 

highlighted the impact of this infection systemically. Genes up-regulated in blood-

isolated-monocytes (BIMs) showed a significant association with interferon and 

chemokine signalling. Furthermore, twenty-six miRNAs were differentially expressed 

in MIMs and three in BIMs. Pathway analysis revealed that predicted targets of down-

regulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8) 

in particular TLR signalling, while up-regulated miRNAs preferentially targeted 

genes involved in metabolism. We conclude that during S. uberis infection miRNAs 

are key amplifiers of monocyte inflammatory response networks and repressors of 

several metabolic pathways.  
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INTRODUCTION 

 

Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that 

is associated with very significant costs to the global dairy industry. In Europe this 

cost is estimated to be approximately €2 billion/annum (Wells et al., 1998), with 

similar figures available for the USA (Jones, 2009). Causative agents of mastitis 

infection include, but are not limited to coliforms (E. coli), Streptococci (S. uberis) 

and Staphylococci (S. aureus). Streptococcus uberis is now ranked amongst the most 

prevalent mastitis causing pathogens throughout the EU and in North America 

(Reinoso et al., 2011; Ward et al., 2009).  

 Mastitis develops as bacteria entering the udder via the teat canal stimulate a 

pathological form of inflammation. Bacteria encounter epithelial cells lining the 

mammary gland stimulating a local inflammatory response which facilitates their 

transport across the epithelial barrier where they are detected by resident immune 

cells, such as monocytes. Both cell types constitutively express surface pathogen 

recognition molecules such as Toll-like Receptors (TLRs) enabling them to function 

in a sentinel capacity. Invasive S. uberis triggers TLR2 and 4 mobilising local and 

systemic inflammatory mediators (Bannerman et al., 2004; Moyes et al., 2009). 

Typically, chemokines, interleukins (ILs) and tumour necrosis factor α (TNF) initiate 

local physiological changes in vascular permeability, cell differentiation, and 

apoptosis. Concurrently, systemic innate immune changes provoke acute phase 

protein (APP) production which is distributed systemically to suppress the spread of 

bacteria locally (Mitterhuemer et al., 2010). During this phase, immune cells are 

recruited to the point of infection (Rinaldi et al., 2010). Monocytes are released from 

the bone marrow into the circulatory system and eventually reach the mammary gland 
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via chemokine ligand-mediated cell migration. There they differentiate into 

macrophage and dendritic cell populations (Dong et al., 2013; Shi & Pamer, 2011). 

Neutrophils make up the majority of immune cells in an infected gland during an 

infection. Neutrophils are tasked with directly clearing invasive bacteria via 

phagocytosis or neutrophil extracellular traps (NETS) and subsequently aid in 

resolution of inflammation (Lippolis et al., 2006; Reinhardt et al., 2013). Once 

recruited to the site of infection, monocytes and neutrophils orchestrate antimicrobial 

activity to control bacterial spread and resolve the infection (Dong et al., 2013; 

Serbina et al., 2008). Immune cells and other somatic cells can be detected in the milk 

of infected animals and the counts of the number of such somatic cells per ml, called 

the somatic cell count, is an indicator of mastitis (Jones, 2009).  

 The local immune response in mammary tissues has been examined by several 

approaches both in vivo & in vitro. Candidate gene based approaches and microarray 

technology have determined that over 2,000 genes spanning immunity, metabolism, & 

tissue remodelling are active during mastitis (Mitterhuemer et al., 2010; Moyes et al., 

2009; Swanson et al., 2009). Modest data is, however, available examining 

transcriptional activity in either milk or blood monocytes from infected animals 

(Prgomet et al., 2005) and little is known regarding the role microRNAs play in 

regulating these responses.  

 MicroRNAs (miRNAs) are small, non-coding RNAs, which play a key role in 

the regulation of innate and adaptive immunity as post-transcriptional regulators of 

gene expression (O'Connell et al., 2010). They have been shown to regulate immune 

function in several cell types. Neutrophil senescence, for example, is regulated by a 

discrete miRNA repertoire (Ward et al., 2011). Naïve mouse B cells are indirectly 

regulated by miR-155 via histone deacetylase 4 repression, while naive CD4+ T cell 
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differentiation and function is regulated by global changes in miRNAs (Bronevetsky 

et al., 2013; Sandhu et al., 2012). In a recent study, we concluded that miRNAs likely 

play a key role in regulating the innate immune response in mammary epithelial cells 

to a bovine mastitis pathogen in vitro (Lawless et al., 2013).  

 Although miRNA expression is abundant in numerous bovine tissues, 

genome-wide studies elucidating the regulatory roles of miRNAs in bovine immunity 

are limited (Coutinho et al., 2007; Jin et al., 2009; Xu et al., 2009). Furthermore, no 

bovine studies to date have applied next generation sequencing (NGS) to examine 

global miRNA expression in immunity and infection in vivo. In this study, we report a 

NGS approach to profile the expression of bovine miRNAs & mRNAs at multiple 

time-points in milk and blood isolated CD14+ monocyte cells isolated from Holstein 

Friesians infected in vivo with Streptococcus uberis a causative agent of bovine 

mastitis. 
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MATERIALS AND METHODS 

 

Animals 

 

10 female Holstein Friesians in the middle of their first lactation period, aged between 

26-30 months, and 3-5 months post-partum, were selected for this study. The trial was 

conducted at the USDA National Animal Disease Centre (NADC) Ames, Iowa. All 

animals had a medical history that was free from mastitis. The National Animal 

Disease Centre’s Animal Care and Use Committee approved all procedures used in 

this study. 

 

Infection Protocol 

 

Five animals were infected via the teat canal of the right front quarter with 

approximately 500 colony forming units (CFU) of a mastitis-causing pathogen, 

Streptococcus uberis 0140, in 10 ml of saline. Five control animals were inoculated 

with saline only. Milk and blood samples were obtained from each animal at 0, 12, 

24, 36 and 48 hrs post-infection (or mock infection) as described below. At each time 

point rectal temperature, total volume of milk, somatic cell count, bacterial counts, 

ambient temperature, humidity, and additional observations were recorded for each 

animal. Bacterial counts were determined from 5 ml milk samples collected 

aseptically from the infected quarter. Milk was serially diluted in sterile phosphate-

buffered saline and spread on blood agar plates, then incubated for 24 h at 37 °C. 

Following incubation, plates were examined for bacterial growth and colony forming 

units (CFU) per ml were determined. 
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Cell Extraction from Milk 

 

Milk was collected using a sterilised quarter milker from infected and control animals 

at each time-point. The total volume of milk was noted. 5ml of milk was isolated for 

milk bacteriology. The remaining milk was then diluted into Hanks balanced salt 

solution w/o Ca, Mg, Phenol red (HBSS) + 10 mM EDTA. The mixture was inverted 

several times, and transferred to a 1l centrifuge bottle and centrifuged in a fixed angle 

rotor at 10,000 x g for 30 mins. After centrifugation the supernatant was poured off 

and the pellets were resuspended in 150 ml of HBSS + 5 mM EDTA. The 

resuspended pellets were then transferred to fresh centrifuge tubes and spun at 2500 x 

g for 30 mins. After the second spin, the supernatant was poured off and the pellet 

from each sample was resuspended in 20ml of RPMI 1640 + 1 mM Sodium Pyruvate 

+ 2 mM l Glutamine + 50 ug/ml Gentamycin + 10% FBS (cRPMI) (Sigma-Aldrich, 

Steinheim, Germany). The 20 ml of cell suspension was divided into 2 x 10 ml 

aliquots in 15ml conical centrifuge tubes. The cells were pelleted by centrifuge @ 650 

x g. After this spin the pellets were pooled into 4ml of cRPMI and were labelled for 

cell sorting. The cells were counted by trypsin blue exclusion (Careforde, IL, USA) to 

determine the cell count. 

 

Cell Extraction from Blood 

 

At each time-point, animals were lead into a crush, and 2x60cc syringes of blood were 

extracted by venipuncture and immediately placed on ice. The total volume of blood 

and total number of cells in blood were determined using a haemocytometer. Blood 

was spun for 20 mins at 1200 x g. The buffy coat was observed between serum and 
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red blood cell phase, and removed. Contaminating red blood cells were lysed by 

adding 1 volume lysis solution (10.6mM Na2HPO4; 2.7mM NaH2PO4) and inverting 

the tubes several times immediately followed by adding ½ volume restore solution 

(10.6mM Na2HPO4; 2.7mM NaH2PO4; 460mM NaCl) and inverting the tubes. The 

buffy coat was then spun for 10 mins at 650 x g, and the red supernatant was poured 

off. Cells were re-suspended in red blood cell lysis solution and then restore solution 

again as above. Cell were spun for a further 5 mins at 650 x g, and re-suspended in 5-

10 ml of media.   

 

Isolation of CD14+ Monocytes by Flow Cytometry 

 

Milk and blood derived CD14+ monocytes were isolated by Fluorescence-activated 

cell sorting (FACS). Briefly, cells were labelled with monoclonal anti-bovine 

CD14 (Clone CAM36A, VMRD, Pullman, WA, USA) and a PE-conjugated anti-

mouse IgG1 antibody (Southern Biotechnology, Birmingham, AL, USA). Labelled 

cells were separated based on fluorescence intensity using the BD FACS Aria Cell 

Sorting System (BD Biosciences, CA, USA). Cells with greater than 95% purity were 

isolated from the milk and peripheral blood of each animal. 

 

mRNA Extraction 

 

The mirVanaTM RNA Isolation Kit (Ambion, TX, USA.) was used to extract total 

RNA from FACS-isolated cell populations. Procedures were performed according to 

the manufacturer’s protocol (File S1). RNA was quantified, and integrity confirmed 
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using an Agilent RNA Kit on a 2100 Bioanalyzer platform (Agilent Technologies, 

CO, USA) (File S1).   

 

miRNA Extraction 

 

MicroRNA was extracted using mirPremierTM microRNA Isolation Kits (Sigma-

Aldrich, Steinheim, Germany). Procedures were performed according to the 

manufacturer’s protocol (File S1). Small RNA was quantified using an Agilent small 

RNA Kit on a 2100 Bioanalyzer platform (File S1). 

 

mRNA Library Generation  

 

One hundred indexed mRNA libraries (50 blood monocyte and 50 milk monocyte 

libraries) were prepared for cluster generation using TruSeq v2 RNA sample 

preparation kits (Illumina, CA, USA). Procedures were performed according to the 

manufacturer’s protocol (File S1). The finished libraries were validated on an Agilent 

Bioanalyzer 2100 using an Agilent DNA-1000 chip (Agilent, CO, USA), at which 

point they were loaded for cluster generation. The samples were sequenced on an 

Illumina HiSeq 2000 at the Iowa State Sequencing Centre (50bp single-end). Infected 

and control samples (n =100) were randomised across four flow cells (i.e. 3 or 4 

samples multiplexed per lane) to avoid confounding flow cell/lane effects (Auer & 

Doerge, 2010). The barcode compatibility chart provided with the TruSeq RNA 

sample preparation kit was adhered to when pooling libraries.  Fastq files were 

produced using the CASAVA 1.8 pipeline. 
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mRNAseq Analysis  

 

100 fastq files were generated containing the sequencing data for each of the 100 

mRNAseq libraries.  The quality and number of the reads for each sample were then 

assessed using FASTQC v0.10.0 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Each sample was then put 

through a number of quality control filters. Firstly, reads were filtered using the fastq 

Illumina filter v0.1 (http://cancan.cshl.edu/labmembers/gordon/fastq_illumina_filter/), 

which removes reads from the fastq files which were flagged as not passing the 

Illumina CASAVA pipeline filters. Cutadapt v1.2 

(http://code.google.com/p/cutadapt/) was used to trim the adaptors from reads where 

necessary. The remaining reads were then further filtered using the fastq quality filter 

package (http://hannonlab.cshl.edu/fastx_toolkit/) v0.0.13.2. Reads where at least 

70% of the bases had a Phred score < 20 were removed. Reads passing all the above 

filters were also trimmed at their ends to remove low quality bases (Phred score < 20). 

Reads which were < 20 nt after trimming were discarded. Reads which passed all 

quality control steps were then aligned to the bovine genome (UMD3.1 assembly 

(Zimin et al., 2009)) using TopHat v 2.0.8 (Trapnell et al., 2009) allowing 1 

mismatch. Reads that did not uniquely align to the genome were discarded. HTSeq-

count version 0.5.3p3 

(http://wwwhuber.embl.de/users/anders/HTSeq/doc/overview.html) using the union 

model was used to assign uniquely aligned reads to Ensembl (v69) annotated bovine 

genes. 
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Differential Gene Expression Analysis 

 

Data was normalised across libraries using the trimmed mean of M-values (TMM) 

normalisation method (Bullard et al., 2010). The R (version 2.15.2) Bioconductor 

package EdgeR (v2.4.6) (Robinson et al., 2010), which uses a negative binomial 

distribution model to account for both biological and technical variability was applied 

to identify statistically significant differentially expressed genes. Any samples that 

had < 5 million uniquely aligning reads were removed from further analysis. Only 

genes that had at least 1 count per million in at least 3 samples were analysed for 

evidence of differential gene expression. The analysis was undertaken using 

moderated tagwise dispersions. Differentially expressed  genes were defined as 

having a fold change in gene expression > 1.5 and a Benjamini and Hochberg 

corrected FDR of < 0.05 (Benjamini & Hochberg, 1995).  

 

Hierarchical Clustering 

 

Hierarchical clustering of milk and blood mRNA normalised read counts were carried 

out in the R (version 2.15.2) hclust package. Heatmaps were generated using the R 

heatmap package.  

 

Gene Ontology and Pathway Analysis 

 

The R (version 2.15.2) Bioconductor package GOseq (version 1.10.0) which corrects 

for gene length bias (Young et al., 2010) was used to identify over-represented 

pathways using pathway annotation imported from the Kyoto Encyclopedia of Genes 
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and Genomes (KEGG) (Kanehisa et al., 2007) database. KEGG disease pathways 

were excluded to focus the analysis on primary signalling pathways. Pathways were 

considered significantly over-represented with an FDR < 0.05.  Pathway analysis was 

undertaken using Ensembl predicted human 1:1 orthologs of the bovine differentially 

expressed genes.  

 Additionally, we manually generated two pathway annotations that were of 

interest but not annotated in detail in KEGG; the “inflammasome” and “interferon” 

pathways. Gene IDs for these pathways were sourced from SA biosciences (Qiagen) 

RT² Profiler™ PCR Array Human Interferon and Receptors (PAHS-064A), and RT² 

Profiler™ PCR Array Human Inflammasome (PAHS-097A) annotations. The 

interferon pathway consisted of 84 genes (Table S1) whose expression is controlled 

by or involved in cell signalling mediated by interferon ligands and receptors, while 

the inflammasome pathway consisted of 95 key genes (Table S1) involved in the 

function of inflammasomes, protein complex’s involved in innate immunity, as well 

as general NOD-like receptor (NLR) signalling. 

 

Network Analysis Methods 

 

To generate molecular interaction networks, the human 1:1 orthologs of bovine 

genes that were differentially expressed, at least one of the four time-points, in milk 

isolated monocytes (MIMs) from S. uberis infected animals, were uploaded to 

InnateDB (www.innatedb.com) (Lynn et al., 2008). InnateDB is one of the most 

comprehensive databases of all human and mouse experimentally-supported 

molecular interactions (>300,000 interactions in July 2013) but also specifically 

includes annotation on more than 19,000 manually curated human and mouse innate 
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immunity relevant interactions, many of which are not present in any other database 

(Lynn et al., 2010). Networks were visualized using Cytoscape 2.8.2 (Shannon et 

al., 2003). 

 The network was analysed using the cytoHubba plugin (Lin et al., 2008) for 

Cytoscape 2.8.2 (Shannon et al., 2003) to identify network hubs and bottlenecks 

using default parameters. The jActiveModules plugin (Ideker et al., 2002) in 

Cytoscape 2.8.2 (Shannon et al., 2003) was also used to identify high-scoring 

differentially expressed sub-networks (Overlap Threshold = 0.3; Search depth = 3; 

Number of modules = 5; "Regional Scoring" and "Adjust score for size" both 

enabled). The InnateDB pathway analysis tool was used to identify over-

represented pathways among module genes.  

 

miRNA Library Generation 

 

One hundred indexed miRNA libraries (50 blood and 50 milk monocyte libraries) 

were also prepared for cluster generation and sequencing using the TruSeq Small 

RNA sample preparation kit. These miRNA libraries were prepared from the same 

samples that the mRNAseq libraries were prepared. Procedures were performed 

according to the manufacturer’s protocol (File S1). The finished libraries were 

validated on an Agilent Bioanalyzer 2100 using an Agilent DNA high sensitivity chip 

(Agilent, CO, USA), at which point they were loaded for cluster generation. The 

samples were sequenced on an Illumina HiSeq 2000 (50bp single-end). Infected and 

control samples (n =100) were randomised across three flow cells (i.e. 7 or 8 samples 

multiplexed per lane), to avoid confounding flow cell/lane effects (Auer & Doerge, 

2010). Fastq files were produced using the CASAVA 1.8 pipeline. In a few cases, the 
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sequenced miRNA libraries were found to be adaptor contaminated. These libraries 

were re-purified and re-sequenced. The list of re-sequenced samples can be found in 

the supplementary data section (Table S2).  

 

miRNAseq Analysis 

 

Preliminary quality control analysis of the 100 miRNAseq fastq files was again 

carried out with FASTQC software v0.10.0 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Cutadapt v1.2 

(code.google.com/p/cutadapt/) was then used to trim 3’ adaptor sequences. Reads 

which were shorter than 18 nucleotides after trimming were discarded. Trimmed reads 

were then further filtered using the fastq quality filter 

(http://hannonlab.cshl.edu/fastx_toolkit/) v0.0.13.2. Reads where at least 70% of the 

bases had a Phred score < 20 were removed (Cock et al., 2010). Finally, reads passing 

all the above filters were also trimmed at their ends to remove low quality bases 

(Phred score < 20). Reads which successfully passed filtering were aligned to the 

bovine genome (UMD3.1) using novoalign v2.08.03 in miRNA mode 

(http://www.novocraft.com) allowing 1 mismatch. Non-uniquely aligning reads were 

discarded. HTSeq version 0.5.3p3 (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html) using the union model was 

used to assign uniquely aligned reads to miRBase v 19 miRNA annotation (Kozomara 

& Griffiths-Jones, 2011). The sequencing data from this publication have been 

submitted to the NCBI GEO database and assigned the identifier (GSE51858). 
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Differential miRNA Expression Analysis  

 

Prior to assessing differential expression, miRNAseq count data were first normalised 

across libraries using either the trimmed mean of M-values (TMM) normalisation 

method (Robinson et al., 2010) or upper-quantile normalisation (Bullard et al., 2010). 

Differential expression analysis of miRNAseq data has been shown to be sensitive to 

the normalisation approach implemented (Garmire & Subramaniam, 2012). To 

address this issue, we identified differentially expressed miRNAs in two alternatively 

normalised datasets; TMM-normalised (Robinson et al., 2010), upper-quantile 

normalised and with no normalisation. Only miRNAs which were identified as 

differentially expressed across all three datasets were considered further i.e. the 

differential expression of these miRNAs was robust to the normalisation procedure 

(Lawless et al., 2013). Any samples that had < 2 million uniquely aligning reads were 

removed from further analysis. The R (version 2.15.2) Bioconductor package EdgeR 

(v2.4.6) (Robinson et al., 2010) was applied to identify statistically significant 

differentially expressed miRNAs. The analysis was undertaken using moderated 

tagwise dispersions. Differentially expressed miRNAs were defined as having a 

Benjamini and Hochberg corrected P value of < 0.05 (Benjamini & Hochberg, 1995).  

 

Co-expression and Target Analysis of miRNA and mRNA Data  

 

To identify mRNAs that were potentially regulated by differentially expressed (DE) 

miRNAs in MIMs, we first sought to calculate Pearson correlations, using the Apache 

commons Java statistics library, between all DE miRNA expression in reads per 

million (rpm) and all mRNA expression (TMM normalised read counts) over the 
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time-course. A correlation matrix was constructed consisting of 26 (DE miRNAs) x 

24,616 (All mRNAs) correlation coefficients. The resulting correlation matrix was 

then filtered to remove both non-significant correlations (critical value for Pearson’s 

correlation for this matrix is r = -0.3116) and those inverse correlations that were not 

supported by miRanda predicted miRNA-target pairs (miRanda v3.3a). The mRNAs 

predicted to be targeted (i.e. had a significant anti-correlation relationship in the 

expression of the mRNA and the miRNA, plus a predicted seed target) by either up- 

or down-regulated miRNAs were then selected for pathway analysis. Two-

dimensional cluster analysis and visualization, using R version 2.15.3 hclust and 

heatmap.plus packages, was then applied to the filtered correlation matrix.   

 

Pathway Analysis of Predicted miRNA Target Genes 

 

Target genes of differentially expressed miRNAs were submitted to InnateDB (Lynn 

et al., 2008) for pathway analysis. Genes were submitted in two groups; those that 

were targets of up-regulated miRNAs, and those that were targets of down-regulated 

miRNAs. Significant pathways were calculated based on hypergeometric analysis, 

pathways of interest were defined as having a Benjamini and Hochberg corrected P 

value of < 0.05 (Benjamini & Hochberg, 1995).      

 

Novel miRNA Discovery 

 

Using the software package miRDeep2 v0.0.5 (Mackowiak, 2011) we examined 

whether milk/blood monocytes encoded for miRNAs not yet annotated in the bovine 

genome. We further parsed this data using a number of different parameters to 
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identify those novel miRNAs that have the highest likelihood of being true positives 

as described previously (Lawless et al., 2013). Specifically, we identified those 

predictions where both the mature and star stands were expressed with a minimum of 

5 reads each; where miRDeep2 predicted that the miRNA had > 90% probability of 

being a true positive; where the hairpin structure had a significant Randfold p-value 

and where the novel miRNA was independently predicted in two or more different 

miRNAseq samples.  
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RESULTS 

 

The Kinetics of S. uberis Infection in vivo 

 

To investigate the host monocyte transcriptional and post-transcriptional response to a 

mastitis-causing pathogen in vivo, five Holstein Friesian animals were infected via the 

teat canal with approximately 500 CFU of Streptococcus uberis 0140, in 10 ml of 

saline. Five control animals were inoculated with saline only. Blood and milk samples 

were taken at 0, 12, 24, 36 and 48 hours post infection (hpi) and CD14+ monocytes 

were isolated by FACS (Figure 1). The infection was monitored using recorded milk 

bacterial counts (CFU/ml) and somatic cell counts (per ml) at each of the five time 

points for each animal (control & infected). On average, bacterial counts peaked in 

the infected animals at 24hpi, whereas no change was observed in the uninfected 

controls. There was, however, significant heterogeneity among the CFU data for each 

infected animal, in terms of the magnitude and the timing of the response (Figure 2A 

and Table S3). One infected animal (TI3 - which had the highest CFU/ml data) 

peaked at 24hpi, two others (TI1 and TI4) peaked at 36hpi and CFU data for one 

animal was still climbing at 48hpi (TI5). Additionally, one infected animal was 

observed to have only a very modest increase in bacterial counts (TI2). Somatic cell 

count (SCC) data also confirmed the presence of the infection in the challenged 

animals and not in the controls. SCC was observed to increase at 24hpi and by 36hpi 

was, on average, >900,000 cells/ml in infected animals. In comparison, the average 

SCC in control animals at 36hpi was <52,000 cells/ml (Figure 2B & Table S3). An 

SCC reading >200,000 cells/ml is generally considered diagnostic of mastitis (Dufour 

& Dohoo, 2013). Again there was heterogeneity in the SCC response in the infected 
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animals. Interestingly, the infected animal that was observed to have only a modest 

increase in CFU/ml (TI2) had a relatively robust SCC response.  

 

Profiling mRNA Expression in Blood and Milk Isolated CD14+ Monocytes 

 

A next generation sequencing approach was applied to monitor the transcriptional 

(mRNAseq) and post-transcriptional (miRNAseq) changes that occurred in both blood 

and milk isolated CD14+ monocytes in the infected and control animals (Figure 1). 

Sequencing of 100 mRNA Illumina libraries (i.e. 50 blood and 50 milk monocyte 

mRNA libraries) yielded >4 billion sequence reads. More than 3 billion reads of these 

mapped uniquely to the Bos taurus UMD 3.1 genome (Table S2). The average 

correlation coefficient of mRNA normalised read counts between samples at each 

time-point was 0.95 for control samples and 0.92 for infected samples indicating very 

high reproducibility of the data among replicates (Table S4). 

 Hierarchical Clustering of normalised mRNA read counts from MIMs 

revealed that the control and infected animals clearly separated at 36 and 48hpi except 

for the one infected sample (TI2) which had very low bacterial counts and likely did 

not developed a full infection (Figure 2C-F). This sample was subsequently excluded 

from differential gene expression analysis. Hierarchical Clustering of the normalised 

mRNA read counts of genes that were differentially expressed in blood isolated 

monocytes (BIMs) revealed that only 3 of the infected animals (TI1, TI3 and TI4) 

separated from uninfected controls at 36 and 48hpi (Figure S1). These animals also 

had the highest SCC data at these time-points.  

 We utilised the EdgeR statistical package (Robinson et al., 2010) to determine 

which mRNAs were significantly differentially expressed in MIMs and BIMs in 
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response to S. uberis. In MIMs, there were 4, 36, 1774, and 1532 up-regulated genes 

at 12, 24, 36 and 48hpi, respectively. The majority (1,254) of genes up-regulated at 

48hpi were also up-regulated at 36hpi. Additionally, there were 5, 2, 1518 and 995 

down-regulated genes in MIMs at those time-points. Of the 995 down-regulated genes 

at 48hpi, 80% were also down-regulated at 36hpi. Overall, 2056 different genes were 

up-regulated and 1721 different genes were down-regulated for at least one time-point 

in MIMs in response to S. uberis infection (Table S5).  

 Traditionally, mastitis has been thought of as a local bacterial infection with a 

robust inflammatory response. In BIMs, however, we observed a much more subtle 

but still quite significant response to S. uberis infection. Only, ten genes were up-

regulated in BIMs at 36hpi but this increased to 83 genes by 48hpi (Table S5). Nine 

of the ten 36hpi genes were also up-regulated at 48hpi. Additionally, 3, 4, 26, and 39 

genes were down-regulated in BIMs at 12, 24, 36 and 48hpi, respectively. 

 

Pathway Analysis Reveals the Suppression of Metabolic Pathways and the Up-

regulation of Inflammatory Pathways in Response to S. uberis Infection 

 

Pathway analysis of up- and down-regulated genes at each time-point was undertaken 

using GOseq (Young et al., 2010) with pathway annotation imported from the KEGG 

database (Kanehisa et al., 2007) to identify which pathways were statistically 

overrepresented among DE genes in MIMs and BIMs. Two manually curated 

pathways (Interferon signalling pathway and the Inflammasome pathway) were also 

included (see methods). No significant pathways were identified among either the 

BIM or MIM DE genes at 12 or 24hpi. At 36 and 48hpi, however, more than 20 

different pathways were identified as being statistically overrepresented (Figure 3 and 
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Table S6). In MIMs, down-regulated genes were predominantly associated with 

metabolic pathways (Figure S2), such as fatty acid and amino acid metabolism, the 

citric acid (TCA) cycle and glutathione metabolism, as well as DNA replication and 

repair pathways and the cell cycle. Down-regulated pathways were largely similar 

between 36hpi and 48hpi, though fewer pathways were significant at 48hpi. Up-

regulated genes, on the other hand, were primarily associated with well-known pattern 

recognition receptor (PRR) pathways (Figure 4) including the Toll-like receptor 

pathway (e.g. TLR2, TLR4, CD14, MYD88, TIRAP, and IRAK1 all up-regulated), 

the NOD-like receptor pathway (e.g. NOD1, NOD2, NLRP3 (NALP3), NLRC4 

(IPAF), NAIP (NAIP5) up-regulated) and the RIG-I-like receptor pathway (e.g. 

DDX58 (RIG-I), IFIH1 (MDA5), CYLD, DHX58 (LGP2), DDX3X, TRIM25); 

interferon signalling and cytokine and chemokine signalling pathways. Up-regulated 

inflammatory cytokine and chemokine genes included the genes encoding TNF, 

IL1A, IL1B, IL6, IL8, IL12A and IL12B, IL17B and IL17C, IL18, IL23A, IL27, 

CCL3 (MIP1α) CCL4 (MIP1β), CCL5 (RANTES), CCL8 (MCP-2) and CCL20 

(MIP3A). The genes encoding TNF, IL1B, IL6, IL12 and CCL20 were more than 10 

fold up-regulated at 36hpi. All up-regulated pathways that were significant at 36hpi 

were still significant at 48hpi, with 5 additional up-regulated pathways being 

significant only at 48hpi. These pathways were primarily related to leukocyte 

migration and phagocytosis.    

 In BIMs, only two pathways were statistically over-represented among 48hpi 

up-regulated genes - Interferon signalling and Cytokine-cytokine receptor interaction 

(Table S6). No pathways were significant at the other time-points. Among down-

regulated genes, there were also few over-represented pathways. Those pathways that 
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were significant were primarily related to the complement and focal adhesion 

pathways.  

 

Network Analysis of Differentially Expressed Genes 

 

InnateDB was used to generate a network of experimentally-supported molecular 

interactions that have been annotated to occur directly between the differentially 

expressed genes and their encoded products. Gene expression data from each of the 

four post-infection time-points was then overlaid on this network and the network 

was visualised using Cytoscape 2.8.2 (Shannon et al., 2003) (Figure 2 G-J). The 

network consisted of 2,185 nodes (representing differentially expressed genes and 

their encoded products) and 10,786 edges (representing annotated molecular 

interactions) between them.  

 The network was then analysed using cytoHubba  (Lin et al., 2008) to identify 

network hubs and bottlenecks which may represent the key regulatory nodes in the 

networks. Using the “Degree” algorithm the top 20 hubs (i.e. genes/proteins that are 

highly connected to other DE genes) in each network were identified (Table S7). 

InnateDB Gene Ontology analysis revealed that the top 20 hubs were highly enriched 

for roles in innate immunity (FDR < 1.7e-8) and transcriptional regulation (FDR < 

1.5e-7). Indeed, many of the top 20 hubs were well-known transcriptional regulators of 

innate immunity including JUN, NFKB1, RELA, STAT1, STAT3, EP300, and 

CREBBP. These transcriptional regulators were located in the most densely 

connected portion of the network and share many connections (Figure 5A). One 

interpretation of this is that transcriptional regulation by several of these transcription 

factors is required for differential gene expression in response to the infection.   
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 Bottlenecks are network nodes that are the key connector proteins in a network 

and have many “shortest paths” going through them, similar to bridges or tunnels on a 

highway map (Yu et al., 2007). 17 of the top 20 hubs were also identified as network 

bottlenecks. Beta-actin (ACTB), the transcriptional regulator, FOS (AP1), and ISG15, 

were additionally identified in the top 20 bottlenecks. ISG15 has been shown to act as 

a negative regulator of both the NFκB and RIG-I signalling pathways (Arnaud et al., 

2011; Minakawa et al., 2008)  

 Identifying hubs solely based on their degree can identify nodes that, in 

general, have been annotated to have lots of interactions. This fails to address whether 

the number of connections in a particular network of interest is more or less than is 

expected (given the number of known interactions for that node in the database and 

the size of the network). To address this issue, we have developed the Contextual Hub 

Analysis Tool (CHAT) (Wiencko et al., unpublished), a network analysis tool which 

identifies nodes in a network that are more highly connected to contextually relevant 

nodes (in this case differentially expressed nodes) than is expected by chance (Table 

S8). Applying this method to our network identified that several of the hub nodes (e.g. 

KIAA0101), did not have more connections to differentially expressed genes than 

expected by chance. This means that these genes, although highly connected, are less 

likely to be functionally important in our network. On the other hand, all of the 

transcriptional regulators of innate immunity that were identified as hubs in the 

analysis above (JUN, NFKB1, RELA, STAT1, STAT3, EP300, CREBBP), were also 

identified by CHAT to be significantly more connected to 36hpi differentially 

expressed genes than expected by chance. CHAT also identified several other known 

innate immunity transcriptional regulators in the top 20 "contextual" hubs including 

REL, IRF1, and IRF9. Indeed 15 of the top 20 contextual hubs are annotated by 
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InnateDB as having a role in innate immunity (FDR < 1.16E-12). Although the ranking 

of the top contextual hubs changed from 36 to 48hpi, the most significant hubs 

remained the same. 

 The network was also analysed using the jActiveModules plugin (Ideker et al., 

2002) in Cytoscape 2.8.2 (Shannon et al., 2003) to identify high-scoring differentially 

expressed sub-networks. This type of analysis can aid in the identification of 

functionally relevant groups of differentially expressed genes that may be acting in 

concert. A single highly connected component (>10 nodes) was identified consisting 

of 278 nodes and 1,585 interactions. This module consisted of several of the 

transcriptional hubs (CREBBP, EGR1, EP300, NFKB1, RELA) identified in the 

analysis above and their interactors (Figure 5B). Pathway analysis of genes in the 

module revealed that the module was statistically enriched for many of the same 

pathways that were identified in the analysis of all up-regulated genes including Jak-

STAT signalling, the TLR, NLR and RIG-I pathways, apoptosis, and chemokine and 

cytokine signalling (Table S9).  

 

Profiling miRNA Expression in Blood and Milk Isolated CD14+ Monocytes 

 

Sequencing of 100 miRNA Illumina libraries yielded over 1 billion reads for both the 

MIM and BIM samples. Following a pipeline of quality filtering and adaptor 

trimming, a total of 312 and 492 million reads from MIMs and BIMs, respectively, 

mapped uniquely to the Bos taurus UMD 3.1 genome (Table S2). Uniquely aligning 

reads were then assigned to known mRNAs/miRNAs using HTseq based on miRBase 

v19 annotation of the bovine genome to generate read counts per mature miRNA in 
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each sample (Flicek et al., 2012; Hubbard et al., 2009). On average, 79% of MIM 

reads and 80% of BIM reads, uniquely mapped to known miRNAs (Figure S3). 

 RNAseq profiling revealed that the miRNAome of MIMs and BIMs were 

broadly similar and exhibited a range of miRNA expression that has been observed in 

many other cell-types. 297 and 282 miRNAs were expressed at a threshold of >1 rpm 

in MIMs and BIMs, respectively (Table S10). Of these, 136 and 116, respectively, 

were expressed at a level >100 rpm, a level of expression that has been shown to be 

associated with functional miRNAs (Mullokandov et al., 2012). 

   

Multiple miRNAs are Differentially Expressed in Response to S. uberis Infection 

 

The EdgeR statistical package was utilised to determine which miRNAs were 

significantly differentially expressed in response to S. uberis infection at 12, 24, 36, 

and 48hpi. To address any normalisation issues we retained only those miRNAs that 

were robust to the normalisation procedure used (Lawless et al., 2013). Additionally, 

only miRNAs that had an average expression of >10 rpm across samples were 

included for further analysis. In MIMs, we identified that 26 unique miRNAs were 

differentially expressed. Twelve of these miRNAs were differentially expressed 

across more than one time-point (Table 1). Hierarchical clustering of the normalised 

read counts for MIM differentially expressed miRNAs revealed that the control and 

infected animals clearly separated at 36hpi (Figure 6). Very few miRNAs were 

differentially expressed in blood monocytes. We found 3 in total, 1 at 24hpi and 3 at 

48hpi (1 was differentially expressed at both time-points) (Table 1).  

 Many of the miRNAs identified as being differentially expressed have been 

shown to have a role in immunity in other species. miR-223, for example, which was 
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up-regulated at 36hpi in MIMs, has a multi-factorial role in neutrophils, regulating 

their proliferation, activation and granulopoiesis (Chen et al., 2004; Fazi et al., 2005). 

Interestingly, in RAW264.7 cells challenged with LPS, miR-223 has been reported to 

be down-regulated, allowing the up-regulation of signal transducer and activator of 

transcription 3 (STAT3), which promotes pro-inflammatory IL-6 and IL-1β 

transcription. We have previously commented on the differences in the miRNA 

response to LPS and S. uberis, a Gram-positive bacterium (Lawless et al., 2013).  

 Other DE miRNAs in our study that have a demonstrated role in immunity and 

infection in other species includes let-7e, which was down-regulated in MIMs 

following S. uberis infection. Let-7e, has been shown to regulate Caspase 3 and 7 in 

human monocyte derived macrophages infected with Mycobacterium avium 

hominissuis (Sharbati et al., 2011). Let-7e, as well as several other DE miRNAs in our 

study (bta-miR-200c, bta-miR-210, and bta-miR-193a) have also previously been 

identified as DE in bovine mammary epithelial cells stimulated with S. uberis in vitro 

(Lawless et al., 2013).  

 Another DE miRNA with a role in immune regulation is miR-150, which we 

observed to be down-regulated at both 36 and 48hpi in MIMs. miR-150 targets 

MyD88 (up-regulated at both 36 and 48hpi in MIMs), a key regulator of TLR 

signalling (Ghorpade et al., 2013). miR-150 has also been shown to target CXCR4 

(Rolland-Turner et al., 2013; Tano et al., 2011), which was up-regulated 2-fold at 36 

and 48hpi in MIMs. Finally, one of the miRNAs that was identified as down-

regulated in BIMs, miR-146b, has been shown to target TNF receptor-associated 

factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK1) genes in THP-1 

cells stimulated with LPS (Taganov et al., 2006).  
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The Predicted Targets of Down-regulated but not Up-regulated miRNAs are Highly 

Enriched for Roles in Innate Immunity  

 

To identify the potential mRNA targets of differentially expressed miRNAs in MIMs 

isolated from infected animals we identified those mRNAs whose expression was 

significantly negatively correlated with miRNA expression. These predictions were 

further refined by removing those miRNA-target predicted relationships that were not 

supported by a predicted seed region in the 3' UTR of the correlated mRNA (Figure 7, 

Table S11). Analysis of the predicted target genes using InnateDB 

(www.innatedb.com) (Lynn et al., 2008), revealed that the predicted targets of down-

regulated but not up-regulated miRNAs were highly enriched for roles in innate 

immunity (FDR < 3.2E-8). More specifically, pathway analysis revealed that down-

regulated miRNAs were predicted to preferentially target key pathogen recognition 

receptor (PRR) signalling pathways including the TLR, NLR and RIG-I signalling 

pathways (Table S12). Given that these pathways were also identified in the 

mRNAseq data as being among the top up-regulated pathways, this finding strongly 

suggests that miRNAs are key regulators of innate immune pathways which drive the 

host inflammatory response during mastitis.  

 In contrast, the predicted targets of up-regulated miRNAs were enriched for 

roles in metabolism (FDR = 0.01). Pathway analysis of the mRNAseq data had 

already highlighted the down-regulation of metabolic pathways in response to S. 

uberis infection (see above). These results suggest that miRNAs may also be key 

regulators of the transcriptional suppression of metabolic pathways during mastitis.  
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Novel miRNA discovery 

  

The miRNA sequencing data was also mined to determine if milk or blood monocytes 

expressed potentially novel miRNAs. Previously, we identified 19 novel miRNAs in 

bovine mammary epithelial cells using miRDeep2 (Lawless et al., 2013). Applying 

the same approach as our previous study we identified a further 20 high-confidence 

putatively novel bovine miRNAs that were independently predicted in multiple 

MIMs/BIMs miRNAseq data (Table S13).  

 Searching the miRBase database (v 20) using BLAST identified that 8 of the 

novel miRNAs had close homology to other miR-2284 family members. miRBase 

currently lists this miRNA family as having 102 members, yet virtually no data exists 

regarding what function such a large group of constitutively expressed miRNAs may 

have. Other novel miRNAs discovered in this study included a homolog of hsa-miR-

3680-3p, a miRNA identified in human periphery blood (Vaz et al., 2010). The 

discovery of these miRNA further adds to the database of bovine miRNAs.  
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DISCUSSION 

 

Infectious disease is a serious threat not only directly to human health but also to 

animal health, where it is associated with substantial annual economic losses, public 

confidence issues and food security concerns. Currently, there is a significant gap in 

the understanding of the molecular and genetic mechanisms which underpin 

susceptibility to infectious disease both in humans and in animals. An important 

reason for this is the fact that disease susceptibility is a multi-factorial complex 

phenotype, which is not the result of single genes acting in isolation but rather is due 

to perturbation at a network or systems level (Barabasi et al., 2011). Such networks 

are regulated at multiple different levels (e.g. genetic, transcriptional, post-

transcriptional) and as such a multi-omic integrative biology approach is needed to 

understand them. 

 Here, we report a next generation sequencing approach coupled with advanced 

network and pathway biology methods to simultaneously profile the mRNA and 

miRNA networks that are differentially regulated in vivo in blood and milk isolated 

CD14+ monocytes during infection with a bovine mastitis pathogen, S. uberis. Bovine 

mastitis is an inflammation-driven disease of the bovine mammary gland, which costs 

the global dairy industry billions of dollars per annum (Jones, 2009; Wells et al., 

1998). Profiling genome-wide changes in mRNA expression in MIMs and BIMs 

using RNAseq, we observed more than 3,500 genes to be statistically altered in their 

expression in response to S. uberis challenge. Notably, this RNAseq approach 

identified approximately 1,000 more differentially expressed genes than had been 

previously reported in a microarray based analysis of RNA expression in mammary 

tissue of cattle infected with the same pathogen (Jensen et al., 2013; Moyes et al., 
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2009; Swanson et al., 2009). As expected, given that mastitis is a relatively localised 

inflammatory disease in the mammary gland, the majority of differentially expressed 

genes were identified in MIMs, which are recruited to the site of infection. This influx 

of immune cells (including monocytes) to the site of infection was observed in 

recorded SCC data only in the infected animals. We also, however, observed a small 

but significant transcriptional response in BIMs to S. uberis infection that was 

primarily associated with an interferon and cytokine signalling signature. Previous 

studies have also shown more systemic changes in gene expression in neighbouring 

uninfected mammary glands, the liver and in the blood (Blum et al., 2000; Jensen et 

al., 2013; Jiang et al., 2008; Mitterhuemer et al., 2010).  

 The predominant signature associated with up-regulated mRNAs in MIMs 

from S. uberis infected animals was the strong transcriptional activation of innate 

immune and inflammatory gene expression. In particular, we noted the transcriptional 

activation of key pattern recognition pathways including the TLR, NLR and RIG-I 

pathways, which likely drive the observed pro-inflammatory response. The 

involvement of TLR signalling (particularly TLR 2 and 4) in the host response to 

mastitis is well documented (Buitenhuis et al., 2011; Ma et al., 2011; Mitterhuemer et 

al., 2010; Porcherie et al., 2012; Whelehan et al., 2011), however, less is known about 

the involvement of the NLR and RIG-I pathways (Moyes et al., 2009). Interestingly, 

the RIG-I pathway is classically associated with viral RNA recognition, however, 

recent findings suggest that RIG-I can also recognise nucleic acids released by 

invasive bacteria and trigger IFN-β and inflammasome activation (Abdullah et al., 

2012). These findings concur well with the observed interferon and inflammasome 

activation transcriptional signatures observed in our study.   
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 Several previous in vitro studies have strongly suggested roles for miRNAs in 

regulating bovine immunity (Dilda et al., 2011; Lawless et al., 2013), however none 

of these have globally profiled the miRNA response to infection in vivo. In this study, 

we have also used next generation sequencing to profile miRNA expression in MIMs 

and BIMs following S. uberis infection. 26 miRNAs were identified as DE in MIMs 

and 3 were identified in BIMs. Several of these have been previously described as 

targeting immune or inflammatory regulators in other species.  Of particular interest is 

our finding that down-regulated but not up-regulated miRNAs in MIMs are predicted 

to preferentially target genes involved in innate immunity and inflammation. 

Furthermore, the TLR, NLR and RIG-I pathways discussed above were all 

preferentially predicted to be targeted. This strongly suggests that the transcriptional 

suppression of these miRNAs enables the activation and amplification of the pro-

inflammatory response. Further supporting this conclusion is the fact that several of 

the DE miRNAs in our study have been validated to target genes in these pathways in 

other species. miR-149, for example, which was down-regulated in MIMs following 

S. uberis infection, has been shown to target mouse CD14 and IRAK1 (Chi et al., 

2009), key signalling proteins in the TLR pathway. Both CD14 and IRAK1 are also 

predicted to be targets of bta-miR-149 in our study.  

 The other predominant transcriptional signature that we found in MIMs 

following S. uberis infection was the wide-spread repression of a number of metabolic 

processes (> 150 KEGG-annotated metabolism genes are down-regulated at 36hpi). 

Interestingly, we found that up-regulated miRNAs were predicted to preferentially 

target genes involved in metabolism, suggesting that miRNAs, which are up-regulated 

in response to S. uberis infection may contribute to the transcriptional suppression of 

metabolic pathways. This signature of metabolic gene transcriptional suppression may 
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appear initially paradoxical in light of the fact that production of inflammatory 

cytokines is expected to require substantial energy consumption. Indeed, it is now 

becoming widely appreciated that activated macrophages undergo the Warburg effect, 

switching their metabolism from oxidative phosphorylation to glycolysis (McGettrick 

& O'Neill, 2013). This metabolic switch has recently been investigated using a 

combined metabolomics and microarray approach (Tannahill et al., 2013) and has 

revealed the up-regulation of a number of genes involved in glycolysis in bone-

marrow derived macrophages (BMDMs) challenged with lipopolysaccharide (LPS) 

(e.g. solute carrier family 2 (facilitated glucose transporter), member 1 

(SLC2A1/GLUT1), hexokinase 3 (HK3), fructose-2,6-biphosphatase 3 (PFKFB3)) and 

the down-regulation of several key genes encoding enzymes in the TCA cycle (e.g. 

malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 2 (IDH2)). Our 

transcriptional data is very consistent with the data presented in this paper (e.g. 

SLC2A1; HK2 and HK3 and PFKFB4 are all up-regulated and MDH1 and IDH1 are 

down-regulated in MIMs at 36hpi) and suggests that although there is a broad 

signature of transcriptional suppression of metabolism, these cells are likely to be 

highly glycolytically active. Several other genes encoding enzymes in the TCA cycle 

(which was statistically over-represented among down-regulated genes) were also 

transcriptionally repressed in MIMs at 36hpi including dihydrolipoamide 

dehydrogenase (DLD); fumarate hydratase (FH); IDH3B; pyruvate dehydrogenase 

beta (PDHB); MDH2; succinate dehydrogenase complex, subunit B (SDHB); 

succinate-CoA ligase, alpha subunit (SUCLG1). As has also recently been shown in 

BMDMs, LPS strongly increases levels of succinate, a TCA cycle intermediate 

(Tannahill et al., 2013). Succinate acts as an inflammatory signal in macrophages 

inducing IL1B through the transcription factor HIF1α, both of which are 
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transcriptionally activated in MIMs 36hpi (IL1B is 10 fold up-regulated). Another 

metabolic pathway that is significantly transcriptionally repressed in MIMs at 36 and 

48hpi is the KEGG Valine, leucine and isoleucine degradation pathway. Valine, 

leucine and isoleucine are branch-chain amino acids which are converted into Acyl-

CoA derivatives. These are converted either into acetyl-CoA or succinyl-CoA and 

enter the TCA cycle (Sears et al., 2009). Most of the other significantly down-

regulated pathways including Fatty acid metabolism; Propanoate metabolism; 

Butanoate metabolism; Tryptophan metabolism; beta-Alanine metabolism; Lysine 

degradation and Glyoxylate and dicarboxylate metabolism; also result in the 

production of acetyl-CoA and succinyl-CoA that enter the TCA cycle. A similar 

pattern of expression leading to the transcriptional down-regulation of the TCA cycle 

and alternative pathways involved in producing TCA cycle components has also been 

reported in other infection models (Chin et al., 2010). The transcriptional repression 

of these pathways is therefore also consistent with a switch in metabolism from 

oxidative phosphorylation to glycolysis during the pro-inflammatory response.  

 Another pathway that is significantly down-regulated is the KEGG primary 

bile acid biosynthesis pathway. Despite the potentially misleading name, this pathway 

primarily consists of the reactions involved in cholesterol metabolism. The down-

regulation of genes involved in cholesterol metabolism has also been reported in 

monocytes isolated from HIV+ individuals (Feeney et al., 2013) and a number of 

bacterial infections (Dushkin, 2012). The accumulation of cholesterol in monocytes 

and macrophages leads to the formation of foam cells, which in humans are associated 

with the inflammatory disease, atherosclerosis (Ross, 1999). The down-regulation of 

genes involved in cholesterol and fatty acid metabolism is likely driven in part by the 

transcriptional suppression of the PPAR-γ transcription factor in MIMs at 36hpi and 
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the down-regulation of PPAR-α at 48hpi, both of which are key transcriptional 

regulators of these pathways (Dushkin, 2012). Interestingly, the PPARs also have a 

role in the regulation of inflammation, where their suppression is required to induce 

inflammatory gene expression (Bensinger & Tontonoz, 2008). Of further note is that 

one of the liver X receptors, LXR-β (NR1H2), which together with the PPARs is a 

key regulator of inflammation and lipid metabolism (Bensinger & Tontonoz, 2008), is 

up-regulated in MIMs at 36 and 48hpi. LXRs are also known to antagonise 

inflammatory gene expression, so it is somewhat surprising to find LXR-β to be up-

regulated. This may reflect the fact that balance is needed to avoid excessive 

inflammation or that LXRs and PPARs do not completely overlap in the genes that 

they regulate.   

 An additional link between metabolism and inflammation that is currently 

under intensive investigation is the role of NAD+, sirtuins (SIRTs) and AMP-

dependent protein kinase (AMPK) in suppressing inflammation (McGettrick & 

O'Neill, 2013). The activation of TLR4, which along with TLR2 and TLR9 is 

transcriptionally up-regulated in MIMs at 36hpi, has been shown to induce NAM 

phosphoribosyltransferase (NAMPT; up-regulated in MIMs at 36hpi), which in turn 

activates SIRT1 (up-regulated in MIMs at 36hpi) via NAD+. SIRT1 limits 

inflammation by repressing RELA transcription factor activity, a key transcriptional 

hub identified in MIMs. SIRT1 also activates AMPK (up-regulated in MIMs at 

36hpi), a central regulator of energy metabolism. Activation of AMPK has been 

shown to decrease NFκB activity and TNFα production in macrophages stimulated 

with LPS; IL12 production in DCs; and HIF1α. This data suggests that at 36hpi, the 

brakes are starting to be applied to limit the inflammatory response to S. uberis 

infection via SIRT1 and AMPK. The affect of this break is apparent at 48hpi where 
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the genes encoding TNFα, IL1B, IL12 and HIF1α are all down-regulated in 

comparison to 36hpi.  The limiting of inflammation at this stage makes sense based 

on the bacterial count data, which shows that bacterial CFU/ml are dropping, 

suggesting that the infection is being resolved. Interestingly, AMPK activity also 

inhibits both the cholesterol and fatty acid metabolic pathways that, as discussed 

above, are down-regulated in MIMs following S. uberis infection. This suppression of 

fatty acid metabolism has been shown to be beneficial to the host during a viral 

infection (Moser et al., 2012).   

 Finally, we also observed the statistically significant over-representation of 

down-regulated genes annotated in the KEGG glutathione metabolism pathway. 

Glutathione has an important role in innate and adaptive immunity and has been 

shown to confer protection against microbial, viral and parasitic infections (Morris et 

al., 2013). Glutathione metabolism also plays an important role in macrophages in the 

detoxification of reactive oxygen species (ROS). The transcriptional suppression of 

this pathway in MIMs following S. uberis infection may be a consequence of the 

metabolic switch to glycolysis and may be detrimental to the host leading to an excess 

of oxidants in the cells, which could drive the inflammation and tissue damage that 

are characteristic of mastitis. Indeed, in patients with active tuberculosis, PBMC 

intracellular glutathione levels dropped by 70%, this was correlated with increased 

pro-inflammatory cytokines and enhanced bacterial growth (Guerra et al., 2012). 

Supplementation with glutathione has been demonstrated to lead to the control of 

mycobacterial growth (Venketaraman et al., 2003) and also appears to have beneficial 

effects in reducing inflammation in HIV+ patients (Morris et al., 2012). This suggests 

that glutathione supplementation is a potential strategy to reduce the effects of 

inflammation in mastitis.  
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 miRNAs also likely play a key role in regulating the links between 

inflammation and metabolism observed in this study.  Human SIRT1, for example, 

which as discussed above limits inflammation, has been shown to be a target of miR-

34a (Yamakuchi et al., 2008). Our data is consistent with this relationship also 

existing in MIMs, where we have found bta-miR-34a to be down-regulated at 36 and 

48hpi and SIRT1 up-regulated. Other examples of miRNAs that likely 

transcriptionally regulate metabolic pathways in MIMs include miR-451, which is up-

regulated in MIMs at 36 and 48hpi, and has been shown to target MO25 in mouse 

heart tissue altering AMPK signalling (Chen et al., 2012). miR-451 has also been 

shown to regulate the expression of several pro-inflammatory cytokines in mice in 

response to influenza infection (Rosenberger et al., 2012).  

 Aside from providing new insight into the regulatory role miRNAs play in S. 

uberis infection in vivo, our study also provides the ground-work for a number of 

potential practical applications in veterinary medicine. miRNAs, for example, exhibit 

many properties that have made them of significant interest as non-invasive 

biomarkers. miRNAs are abundantly and stably expressed in a range of accessible 

tissues including serum, milk, urine, saliva and semen where they can be readily 

measured (Chen et al., 2010; Hata et al., 2010; Kosaka et al., 2010). Importantly for a 

potential biomarker, miRNAs have a high information content, and the expression 

profile of small numbers of them have been shown to be diagnostic of disease (De 

Guire et al., 2013). The use of miRNAs as a clinical biomarker is most advanced in 

human cancer research. In 2009, Prometheus Laboratories released a miRNA 

biomarker to accurately identify 25 different tumour types (Ajit, 2012), and miRNA 

biomarkers are now available for early cancer prognosis from two further companies 

Asuragen & Rosetta Genomics. Next generation sequencing based technologies, such 
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as the approach used in this study, are empowering RNA expression profiling, 

including miRNAs, on a genome-wide scale with unprecedented resolution, accuracy 

and speed and at a relatively low cost (Schuster, 2008). There is significant potential 

to develop these approaches as diagnostics of infection in animals but also in humans 

too.   
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Figure Legends  

 

Figure 1. Overview of the experimental design. Five Holstein Friesian animals were 

infected via the teat canal of the right front quarter with approximately 500 CFU of a 

mastitis-causing pathogen, Streptococcus uberis 0140, in 10 ml of saline. Five control 

animals were inoculated with saline only. Milk and blood samples were obtained from 

each animal at 0, 12, 24, 36 and 48 hrs post-infection (or mock infection). Milk and 

blood derived CD14+ monocytes were isolated by Fluorescence-activated cell sorting 

(FACS) from each sample. mRNA and miRNA were extracted and 200 Illumina-

compatible libraries were prepared for sequencing on a HiSeq 2000 machine. More 

than 4 billion mRNA reads and > 2 billion miRNA reads were sequenced in total.  

       

Figure 2. The response to infection. A) The infection was monitored using recorded 

milk bacterial counts (CFU/ml) and B) somatic cell counts (per ml) at each of the five 

time points (0, 12, 24, 36 and 48hpi) for each animal (control & infected). Significant 

heterogeneity was observed in the CFU data among the infected animals. One 

infected animal (TI2) was observed to have only a very modest increase in bacterial 

counts. C-F) Hierarchical clustering of top 500 most variable probes in milk-isolated 

monocytes (MIMs) at 12, 24, 36 and 48hpi, respectively, revealed that infected 

animals separated from control animals in their gene expression response at 36 and 

48hpi except for animal TI2. G-J) InnateDB network analysis of genes that were 

differentially expressed at 12, 24, 36 and 48hpi, respectively. The networks were 

visualised in Cytoscape.   
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Figure 3. Pathways that were statistically overrepresented among genes. A) up-

regulated at 36hpi; B) up-regulated at 48hpi; C) down-regulated at 36hpi; D) down-

regulated at 48hpi; in MIMs isolated from S. uberis infected animals. Up-regulated 

genes were significantly enriched for roles in inflammatory and other innate immune 

pathways, while down-regulated genes were significantly associated with metabolic 

pathways. 

 

Figure 4. Differential gene expression in key innate immune pathways in MIMs from 

S. uberis infected animals. A-C) Differentially expressed genes highlighted on KEGG 

Toll-like receptor (TLR), NOD-like receptor (NLR), and RIG-I signalling pathway 

diagrams (Red = up-regulated; Green = down-regulated). D-F) RPKM values for each 

of the differentially expressed genes in the TLR, NLR and RIG-I pathways, 

respectively (Red = infected; Blue = Control). C)  Fold change values for each of the 

differentially expressed genes in the TLR, NLR and RIG-I pathways, respectively 

(Red = up-regulated; Green = down-regulated).  

 

Figure 5. Network analysis of differentially expressed genes. InnateDB was used to 

generate a network of experimentally-supported molecular interactions that have been 

annotated to occur directly between the differentially expressed genes and their 

encoded products. A) The top 20 CytoHubba-predicted network hubs and their 

interactors. Overlain on the network is gene expression data from MIMs at 36hpi (Red 

= up-regulated; Green = down-regulated). The top 20 hubs were highly enriched for 

roles in innate immunity. B) The high-scoring differentially expressed sub-network 

identified in the larger network using jActiveModules. This module was highly 

enriched for several innate immune relevant pathways.  
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Figure 6. A heatmap of the normalised read counts of miRNAs that were identified as 

differentially expressed in MIMs at 36hpi.  Hierarchical clustering revealed the 

separation of the infected and control animals based on this miRNA expression data. 

Note that one infected animal (TI2) is not included in this analysis as it did not appear 

to respond to the infection as measured by CFU or mRNA expression data (see Figure 

2).  

 

Figure 7. Visualization of miRNA targets. A) Two-dimensional cluster analysis and 

heatmap visualization of the miRNA/mRNA expression correlation data matrix after 

filtering by predicted miRNA-targets and correlation significance. The primary split 

in the upper hierarchical dendrogram largely aligns with the up-regulated miRNA 

(red) and down-regulated miRNA (green). miRNA/mRNA target expression 

correlations are coloured based on increasing significance (light blue to blue) with 

non-target/non-significant correlations masked (grey). B) A network representation of 

the predicted targets (circular nodes) of down-regulated miRNAs (green arrows). Red 

circles = up-regulated in MIM mRNA expression data at either 36 and/or 48hpi. 

Larger circular nodes represent those genes which have been annotated by InnateDB 

to have a role in innate immunity. C) A network representation of the predicted 

targets (circular nodes) of up-regulated miRNAs (red arrows). Green circles = down-

regulated in MIM mRNA expression data at either 36 and/or 48hpi. Note that the 

predicted targets of down-regulated but not up-regulated miRNAs are highly enriched 

for roles in innate immunity.     
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Tables 

Tissue 
Hours post 
infection (hpi) miR Name Fold change FDR 

MIMs 12 bta-miR-615 16.53 0.002591533 
MIMs 12 bta-miR-451 32.73 0.022589776 
MIMs 12 bta-miR-486 1.77 0.051194817 
MIMs 36 bta-miR-34a -8.07 0.003853138 
MIMs 36 bta-miR-200c -7.12 0.021524752 
MIMs 36 bta-miR-200b -6.59 0.022403054 
MIMs 36 bta-miR-182 -6.43 0.034621112 
MIMs 36 bta-miR-125a -5.86 0.000854468 
MIMs 36 bta-miR-200a -4.90 0.061309129 
MIMs 36 bta-let-7e -4.51 0.046884171 
MIMs 36 bta-miR-760-3p -4.38 0.030789676 
MIMs 36 bta-miR-193a-5p -4.13 0.099288316 
MIMs 36 bta-miR-150 -4.05 0.014886528 
MIMs 36 bta-miR-210 -4.03 0.000399613 
MIMs 36 bta-miR-375 -3.88 0.021524752 
MIMs 36 bta-miR-149-5p -2.77 0.099288316 
MIMs 36 bta-miR-30a-5p -2.48 0.046884171 
MIMs 36 bta-miR-142-5p 2.21 0.033031656 
MIMs 36 bta-miR-363 2.23 0.049537718 
MIMs 36 bta-miR-223 2.44 0.011440656 
MIMs 36 bta-miR-338 2.51 0.017723606 
MIMs 36 bta-miR-339a 2.82 0.01613752 
MIMs 36 bta-miR-2898 2.98 0.003853138 
MIMs 36 bta-miR-1291 3.07 0.033031656 
MIMs 36 bta-miR-423-5p 5.73 0.014512876 
MIMs 36 bta-miR-451 47.12 6.28E-07 
MIMs 48 bta-let-7e -6.92 0.055709133 
MIMs 48 bta-miR-200b -6.06 0.055709133 
MIMs 48 bta-miR-34a -5.37 0.014991858 
MIMs 48 bta-miR-149-5p -4.01 0.055709133 
MIMs 48 bta-miR-375 -3.76 0.006976206 
MIMs 48 bta-miR-210 -3.39 0.072510577 
MIMs 48 bta-miR-125a -3.29 0.087523866 
MIMs 48 bta-miR-150 -3.18 0.033651802 
MIMs 48 bta-miR-99b -2.9 0.055709133 
MIMs 48 bta-miR-338 2.81 0.055709133 
MIMs 48 bta-miR-486 12.79 0.006655283 
MIMs 48 bta-miR-451 48 1.79E-05 
BIMs 24 bta-miR-146b -23.26 0.023903261 
BIMs 48 bta-miR-451 9.74 0.067032312 
BIMs 48 bta-miR-146b -3.52 0.067032312 
BIMs 48 bta-miR-411a -22.44 0.067032312 
Table 1. Fold changes and false discovery rates of differentially expressed miRNAs at 

12, 24, 36, and 48 hours post-infection in milk and blood isolated monocytes. 
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Supplementary Information 

 

File S1. 1.1 MirVanaTM RNA Isolation Kit protocol, 1.2 MirPremierTM microRNA 

Isolation Kits protocol, 1.3 TruSeq RNA Sample Preparation Kit v2 (50 cycles), 1.4 

TruSeq Small RNA Sample Preparation Kit (50 cycles), 1.5 RNA integrity and 

quantification, 1.6 References. 

 

Figure S1. Heatmap of differential gene expression (tpm) in blood isolated 

monocytes across infected and control animals at 12, 24, 36, & 48hpi. The more red 

the colour the more highly expressed that gene is, R (V2.15.2) hclust package. 

 

Figure S2. Down-regulated genes highlighted on the KEGG metabolism network. 

 

Figure S3. The proportion of reads aligning uniquely to bovine ncRNAs. A) Reads 

aligning to ncRNAs in milk isolated monocytes. B) Reads aligning to ncRNAs in 

blood isolated monocytes. The majority of reads align to known miRNAs. 

 

Table S1. Manually generated pathway annotations for inflammasome and interferon 

pathways sourced from SA biosciences (Qiagen) RT² Profiler™ PCR Array Human 

Interferon and Receptors (PAHS-064A), and RT² Profiler™ PCR Array Human 

Inflammasome (PAHS-097A) annotations. 

 

Table S2. Summary read statistics and number of unique alignments for each RNA 

and miRNA library. 
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Table S3. Summary of milk volumes, rectal temperatures, ambient temperatures, 

humidity, and bacterial CFU counts for each animal. Summary of total cell counts, 

FACS isolated cell numbers, RNA integrity, quantity, 18/28S ratio, total quantity of 

RNA/miRNA for each of the 100 RNA/miRNA samples. 

 

Table S4.  Average correlation coefficients of mRNA normalised read counts 

between samples at each time-point for control and infected biological replicates. 

Calculations were carried out in R (version 2.15.2). 

 

Table S5. Differentially expressed genes in milk and blood isolated monocytes at 12, 

24, 36, and 48 hours post infection.  

 

Table S6. Significantly over-represented KEGG pathways among differentially 

expressed genes in milk and blood isolated monocytes at 12, 24, 36, & 48 hours post 

infection. 

 

Table S7.  The top 20 network hubs identified using CytoHubba and enriched Gene 

Ontology terms among hubs.  

 

Table S8. The top 20 contextual hubs identified using the CHAT software.    

 

Table S9. Significantly over-represented KEGG pathways among genes identified in 

the jActiveModules module.  
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Table S10. miRNAs that are expressed > 1 tag per million in bovine blood and milk 

isolated monocytes. 

 

Table S11. Summary of co-expression, target analysis, and Pearson correlations of 

miRNA and mRNA data. 

 

Table S12. Significantly over-represented KEGG pathways among predicted miRNA 

targets.  

 

Table S13. Putative novel bovine miRNAs discovered through miRDeep2 analysis of 

miRNAseq data from 100 milk and blood isolated monocytes.  
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