1,625 research outputs found
Insect visitation of peduncular and petiolar extrafloral nectar glands on castor bean (Ricinus communis L.) plants in Southern California
Castor bean (Ricinus communis L.) is a myrmecophytic plant species with specialized extrafloral nectar (EFN) glands that serve to attract predatory insects, which in return defend plant-tissues against herbivores. The EFN glands on castor bean plants are located along the leaf petioles as well as on the peduncles of its imperfect (unisexual) flowers. This field-project evaluates the richness, diversity, and species assemblage of insects visiting EFN glands located on (female and male) flower peduncles and leaf petioles on castor bean plants growing in a Southern California coastal landscape. We detected that EFN glands on female-flower peduncles were visited by an insect community that was distinct from that of the other two EFN gland types on castor bean. Additionally, the insects visiting EFN glands on male-flower peduncles more closely resembled those observed visiting EFN glands on leaf petioles. We conclude that the observed differences in the biotic defense of foliar and unisexual floral tissues on castor bean are congruent with the optimal plant-defense strategy of a monoecious pioneer species
Propulsion System Modeling and Takeoff Distance Calculations for a Powered-Lift Aircraft with Circulation-Control Wing Aerodynamics
The computation of takeoff distance for powered-lift aircraft is complicated because of the coupling of aerodynamic performance (lift, drag and moment coefficients) with forward speed. Cal Poly has developed an analysis procedure to capture this coupling, and the development of this procedure is continuing. In the past year, Cal Poly has completed a Phase I NRA contract from the NASA for the configuration development and modeling of CESTOL aircraft. The primary objective of this contract was to identify an aircraft configuration in enough detail to proceed into a Phase II contract to design and construct a large scale wind tunnel model followed by a wind tunnel test to measure both aerodynamic performance and noise. Four aircraft configurations have been developed, and all but one of the configurations use circulation control wing aerodynamics (CCW) to produce powered-lift aerodynamic effect for the wing. The aircraft configuration selected for the Phase II contract makes extensive use of CCW to develop high lift aerodynamics for takeoff and initial climb and again for final descent and landing.
An additional goal for the Phase I project was the CFD modeling of the aerodynamics of a CESTOL aircraft, and to use the CFD results to develop a new aerodynamic meta-model. In addition, a meta-model for propulsion performance was to be developed and the two meta-models were to be integrated into an upgraded takeoff code written in MATLAB. These models all combined were to demonstrate an up-graded version of the Cal Poly takeoff performance procedure. However, at present, the aerodynamics meta-model is not yet complete and work will continue on into Phase II. Thus, no specific takeoff performance is demonstrated in this paper. However, in this paper details of the aircraft configurations are presented, the options available to proceed high pressure air to the wing slots to produce CCW aerodynamics are discussed, the propulsion metamodel is defined, the analysis procedure for the aerodynamics meta-model is discussed and the up-graded takeoff program is discussed
Differential phase acoustic microscope for micro-NDE
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers
Infrared High-Resolution Spectroscopy of Post-AGB Circumstellar Disks. I. HR 4049 - The Winnowing Flow Observed?
High-resolution infrared spectroscopy in the 2.3-4.6 micron region is
reported for the peculiar A supergiant, single-lined spectroscopic binary HR
4049. Lines from the CO fundamental and first overtone, OH fundamental, and
several H2O vibration-rotation transitions have been observed in the
near-infrared spectrum. The spectrum of HR 4049 appears principally in emission
through the 3 and 4.6 micron region and in absorption in the 2 micron region.
The 4.6 micron spectrum shows a rich 'forest' of emission lines. All the
spectral lines observed in the 2.3-4.6 micron spectrum are shown to be
circumbinary in origin. The presence of OH and H2O lines confirm the
oxygen-rich nature of the circumbinary gas which is in contrast to the
previously detected carbon-rich material. The emission and absorption line
profiles show that the circumbinary gas is located in a thin, rotating layer
near the dust disk. The properties of the dust and gas circumbinary disk and
the spectroscopic orbit yield masses for the individual stars, M_AI~0.58 Msolar
and M_MV~0.34 Msolar. Gas in the disk also has an outward flow with a velocity
of 1 km/s. The severe depletion of refractory elements but near-solar
abundances of volatile elements observed in HR 4049 results from abundance
winnowing. The separation of the volatiles from the grains in the disk and the
subsequent accretion by the star are discussed. Contrary to prior reports, the
HR 4049 carbon and oxygen isotopic abundances are typical AGB values:
12C/13C=6^{+9}_{-4} and 16O/17O>200.Comment: 42 pages, 14 figures, Accepted by Ap
- …