4,053 research outputs found
Using Measures of Risk Perception to Predict Information Security Behavior: Insights from Electroencephalography (EEG)
Users’ perceptions of risks have important implications for information security because individual users’ actions can compromise entire systems. Therefore, there is a critical need to understand how users perceive and respond to information security risks. Previous research on perceptions of information security risk has chiefly relied on self-reported measures. Although these studies are valuable, risk perceptions are often associated with feelings—such as fear or doubt—that are difficult to measure accurately using survey instruments. Additionally, it is unclear how these self-reported measures map to actual security behavior. This paper contributes to this topic by demonstrating that risk-taking behavior is effectively predicted using electroencephalography (EEG) via event-related potentials (ERPs). Using the Iowa Gambling Task, a widely used technique shown to be correlated with real-world risky behaviors, we show that the differences in neural responses to positive and negative feedback strongly predict users’ information security behavior in a separate laboratory-based computing task. In addition, we compare the predictive validity of EEG measures to that of self-reported measures of information security risk perceptions. Our experiments show that self-reported measures are ineffective in predicting security behaviors under a condition in which information security is not salient. However, we show that, when security concerns become salient, self-reported measures do predict security behavior. Interestingly, EEG measures significantly predict behavior in both salient and non-salient conditions, which indicates that EEG measures are a robust predictor of security behavior
Cheating does not explain selective differences at high and low relatedness in a social amoeba
<p>Abstract</p> <p>Background</p> <p>Altruism can be favored by high relatedness among interactants. We tested the effect of relatedness in experimental populations of the social amoeba <it>Dictyostelium discoideum</it>, where altruism occurs in a starvation-induced social stage when some amoebae die to form a stalk that lifts the fertile spores above the soil facilitating dispersal. The single cells that aggregate during the social stage can be genetically diverse, which can lead to conflict over spore and stalk allocation. We mixed eight genetically distinct wild isolates and maintained twelve replicated populations at a high and a low relatedness treatment. After one and ten social generations we assessed the strain composition of the populations. We expected that some strains would be out-competed in both treatments. In addition, we expected that low relatedness might allow the persistence of social cheaters as it provides opportunity to exploit other strains.</p> <p>Results</p> <p>We found that at high relatedness a single clone prevailed in all twelve populations. At low relatedness three clones predominated in all twelve populations. Interestingly, exploitation of some clones by others in the social stage did not explain the results. When we mixed each winner against the pool of five losers, the winner did not prevail in the spores because all contributed fairly to the stalk and spores. Furthermore, the dominant clone at high-relatedness was not cheated by the other two that persisted at low relatedness. A combination of high spore production and short unicellular stage most successfully explained the three successful clones at low relatedness, but not why one of them fared better at high relatedness. Differences in density did not account for the results, as the clones did not differ in vegetative growth rates nor did they change the growth rates over relevant densities.</p> <p>Conclusions</p> <p>These results suggest that social competition and something beyond solitary growth differences occurs during the vegetative stage when amoebae eat bacteria and divide by binary fission. The high degree of repeatability of our results indicates that these effects are strong and points to the importance of new approaches to studying interactions in <it>D. discoideum</it>.</p
Concurrent coevolution of intra-organismal cheaters and resisters
The evolution of multicellularity is a major transition that is not yet fully understood. Specifically, we do not know whether there are any mechanisms by which multicellularity can be maintained without a single-cell bottleneck or other relatedness-enhancing mechanisms. Under low relatedness, cheaters can evolve that benefit from the altruistic behaviour of others without themselves sacrificing. If these are obligate cheaters, incapable of cooperating, their spread can lead to the demise of multicellularity. One possibility, however, is that cooperators can evolve resistance to cheaters. We tested this idea in a facultatively multicellular social amoeba, Dictyostelium discoideum. This amoeba usually exists as a single cell but, when stressed, thousands of cells aggregate to form a multicellular organism in which some of the cells sacrifice for the good of others. We used lineages that had undergone experimental evolution at very low relatedness, during which time obligate cheaters evolved. Unlike earlier experiments, which found resistance to cheaters that were prevented from evolving, we competed cheaters and noncheaters that evolved together, and cheaters with their ancestors. We found that noncheaters can evolve resistance to cheating before cheating sweeps through the population and multicellularity is lost. Our results provide insight into cheater-resister coevolutionary dynamics, in turn providing experimental evidence for the maintenance of at least a simple form of multicellularity by means other than high relatedness
Predictors of placement from a juvenile detention facility
The purpose of this project was to determine whether certain personal, socioeconomic, and court-related factors are significantly related to the differential placement of delinquent and dependent children from the detention facility at the Donald E. Long Home. A stratified random sample was composed of 173 placements of children who were held in detention after a preliminary hearing.
The review of literature revealed that little systematic. Information is known regarding the placement process as it is related to differential placement of children from a detention facility.
A code sheet was developed for recording the information in the children’s records maintained by the court. Fourteen variables were ultimately selected for analysis of their relationship to differential placement. These variables were subjected to three statistical approaches; a descriptive analysis of the random sample, testing of the significance of each variable to the alternatives in placement by either Chi square or analyses of variance, and testing of several variables in combination by discriminant function.
This study was limited by the fact that only demographic variables were tested. Although three individual variables were found to have a high degree of significance in relation to placement, the data as produced within the scope of this research project does not provide an effective placement profile. The need for additional research in the area of the differential placement process is clearly indicated. Suggestions are made for future research
In the social amoeba, Dictyostelium discoideum , density, not farming status, determines predatory success on unpalatable Escherichia coli
Background The social amoeba Dictyostelium discoideum interacts with bacteria in a variety of ways. It is a predator of bacteria, can be infected or harmed by bacteria, and can form symbiotic associations with bacteria. Some clones of D. discoideum function as primitive farmers because they carry bacteria through the normally sterile D. discoideum social stage, then release them after dispersal so the bacteria can proliferate and be harvested. Some farmer-associated bacteria produce small molecules that promote host farmer growth but inhibit the growth of non-farmer competitors. To test whether the farmers’ tolerance is specific or extends to other growth inhibitory bacteria, we tested whether farmer and non-farmer amoebae are differentially affected by E. coli strains of varying pathogenicity. Because the numbers of each organism may influence the outcome of amoeba-bacteria interactions, we also examined the influence of amoeba and bacteria density on the ability of D. discoideum to grow and develop on distinct bacterial strains.
Results A subset of E. coli strains did not support amoeba proliferation on rich medium, independent of whether the amoebae were farmers or non-farmers. However, amoebae could proliferate on these strains if amoebae numbers are high relative to bacteria numbers, but again there was no difference in this ability between farmer and non-farmer clones of D. discoideum.
Conclusions Our results show that farmer and non-farmers did not differ in their abilities to consume novel strains of E. coli, suggesting that farmer resistance to their own carried bacteria does not extend to foreign bacteria. We see that increasing the numbers of bacteria or amoebae increases their respective likelihood of competitive victory over the other, thus showing Allee effects. We hypothesize that higher bacteria numbers may result in higher concentrations of a toxic product or in a reduction of resources critical for amoeba survival, producing an environment inhospitable to amoeba predators. Greater amoeba numbers may counter this growth inhibition, possibly through reducing bacterial numbers via increased predation rates, or by producing something that neutralizes a potentially toxic bacterial product
Free-Flight Trajectory Simulation of the ADEPT Sounding Rocket Test Using CFD
A computational study of the Adaptive Deployable Entry and Placement Technology (ADEPT) Sounding Rocket (SR-1) Test is presented using the US3D flow solver. ADEPT SR-1 is intended, in part, to assess the dynamic stability of this entry vehicle architecture. Given that no dynamic stability data exists for the ADEPT geometry, a limited ballistic range campaign has been performed to characterize the vehicle's stability characteristics pre-flight for Mach numbers between 1.21 and 2.5. Here, this data is used to assess the accuracy of US3D's free-flight CFD capability. Computed trajectories from US3D and experimental data show that the flow solver compares well in vehicle oscillation frequency, downrange distance, and oscillatory amplitude during high Mach number flight (Mavg = 2.36). For Mach numbers below 1.5, the solver under predicts total angle-of-attack by an average of 16%, but compares well in oscillatory frequency and downrange distance. Additionally, a capability for simulating the trajectory of the flight article through the atmosphere using CFD is presented. This capability couples US3D's free-flight capability to an atmosphere model that accounts for changes in free-stream density and temperature as the vehicle descends. Two simulations for the purpose of demonstrating the capability and viability of this approach are applied to SR-1 flight article, and some unique challenges are discussed
Self-Reported Low Vitality, Poor Mental Health, and Low Dietary Restraint Are Associated with Overperception of Physical Exertion
Objective. We investigated whether perceived exertion, in comparison to the physiological response to exercise, was associated with self-reported vitality, mental health, and physical function during daily activities, or weight control behaviors.
Design. Weight-reduced, formerly overweight women (n = 126, aged 22–46 years), completed health and dietary control questionnaires, and underwent a treadmill-walking task while heart rate, ventilation, respiratory exchange ratio, and ratings of perceived exertion were recorded.
Results. Overperception of exertion (perceived exertion physiological exertion) was inversely associated with vitality (r = −0.190, P < .05), mental health (r = −0.188, P < .05), and dietary control (r values range −0.231 to −0.317, P < .05). In linear regression modeling, vitality or mental health, and cognitive dietary restraint were independently associated with accuracy of perceived exertion, independent of age, ethnicity, and engagement in exercise during weight loss. Each model explained 7%-8% of the variance in accuracy of perceived exertion.
Conclusion. Women with low vitality or poor mental health, and poor dietary control may overperceive exertion. Such overperception may be a barrier to engage in physical activity and thus increase susceptibility to weight gain
Allo-parental care in Damaraland mole-rats is female biased and age dependent, though independent of testosterone levels
Abstract In Damaraland mole-rats (Fukomys damarensis), non-breeding subordinates contribute to the care of offspring born to the breeding pair in their group by carrying and retrieving young to the nest. In social mole-rats and some cooperative breeders, dominant females show unusually high testosterone levels and it has been suggested that high testosterone levels may increase reproductive and aggressive behavior and reduce investment in allo-parental and parental care, generating age and state-dependent variation in behavior. Here we show that, in Damaraland mole-rats, allo-parental care in males and females is unaffected by experimental increases in testosterone levels. Pup carrying decreases with age of the non-breeding helper while the change in social status from non-breeder to breeder has contrasting effects in the two sexes. Female breeders were more likely than female non-breeders to carry pups but male breeders were less likely to carry pups than male non-breeders, increasing the sex bias in parental care compared to allo-parental care. Our results indicate that testosterone is unlikely to be an important regulator of allo-parental care in mole-rats.Peer reviewe
Navigator channel adaptation to reconstruct three dimensional heart volumes from two dimensional radiotherapy planning data
BACKGROUND: Biologically-based models that utilize 3D radiation dosimetry data to estimate the risk of late cardiac effects could have significant utility for planning radiotherapy in young patients. A major challenge arises from having only 2D treatment planning data for patients with long-term follow-up. In this study, we evaluate the accuracy of an advanced deformable image registration (DIR) and navigator channels (NC) adaptation technique to reconstruct 3D heart volumes from 2D radiotherapy planning images for Hodgkin's Lymphoma (HL) patients. METHODS: Planning CT images were obtained for 50 HL patients who underwent mediastinal radiotherapy. Twelve image sets (6 male, 6 female) were used to construct a male and a female population heart model, which was registered to 23 HL "Reference" patients' CT images using a DIR algorithm, MORFEUS. This generated a series of population-to-Reference patient specific 3D deformation maps. The technique was independently tested on 15 additional "Test" patients by reconstructing their 3D heart volumes using 2D digitally reconstructed radiographs (DRR). The technique involved: 1) identifying a matching Reference patient for each Test patient using thorax measurements, 2) placement of six NCs on matching Reference and Test patients' DRRs to capture differences in significant heart curvatures, 3) adapting the population-to-Reference patient-specific deformation maps to generate population-to-Test patient-specific deformation maps using linear and bilinear interpolation methods, 4) applying population-to-Test patient specific deformation to the population model to reconstruct Test-patient specific 3D heart models. The percentage volume overlap between the NC-adapted reconstruction and actual Test patient's true heart volume was calculated using the Dice coefficient. RESULTS: The average Dice coefficient expressed as a percentage between the NC-adapted and actual Test model was 89.4 ± 2.8%. The modified NC adaptation technique made significant improvements to the population deformation heart models (p = 0.01). As standard evaluation, the residual Dice error after adaptation was comparable to the volumetric differences observed in free-breathing heart volumes (p = 0.62). CONCLUSIONS: The reconstruction technique described generates accurate 3D heart models from limited 2D planning data. This development could potentially be used to retrospectively calculate delivered dose to the heart for historically treated patients and thereby provide a better understanding of late radiation-related cardiac effects
- …