199 research outputs found

    Simulations of High-Velocity Clouds. I. Hydrodynamics and High-Velocity High Ions

    Get PDF
    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds, where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization (NEI) algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sight lines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass \approx 120 Msun) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass \approx 4e5 Msun) remained largely intact, although deformed, during its simulation period (240 Myr).Comment: 20 pages, 13 figures. Accepted for publication in the Astrophysical Journa

    Simulations of High-Velocity Clouds. II. Ablation from High-Velocity Clouds as a Source of Low-Velocity High Ions

    Get PDF
    In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dependent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.Comment: 17 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    An XMM-Newton Survey of the Soft X-ray Background. II. An All-Sky Catalog of Diffuse O VII and O VIII Emission Intensities

    Full text link
    We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM observations. The O VII and O VIII intensities are typically ~2-11 and <~3 ph/cm^2/s/sr (LU), respectively, although much brighter intensities were also recorded. Our data set includes 217 directions observed multiple times by XMM. The time variation of the intensities from such directions may be used to constrain SWCX models. The O VII and O VIII intensities typically vary by <~5 and <~2 LU between repeat observations, although several intensity enhancements of >10 LU were observed. We compared our measurements with SWCX models. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (as expected) and at low ecliptic latitudes (not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. The oxygen lines account for ~40-50% of the 3/4 keV X-ray background that is not due to unresolved AGN, in good agreement with a previous measurement. However, this fraction is not easily explained by a combination of SWCX emission and emission from hot plasma in the halo. The line intensities tend to increase with longitude toward the inner Galaxy, possibly due to an increase in the supernova rate in that direction or the presence of a halo of accreted material centered on the Galactic Center. The variation of intensity with Galactic latitude differs in different octants of the sky, and cannot be explained by a single simple plane-parallel or constant-intensity halo model. (Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplement Series. 29 pages (main body of paper) plus 85 pages (full versions of Tables 1, 2, and 4 - these tables will be published as machine-readable tables in the journal, and appear in abbreviated form in the main body of the paper). 12 figures. v2: Minor corrections, conclusions unaltere

    The Origin of the Hot Gas in the Galactic Halo: Confronting Models with XMM-Newton Observations

    Get PDF
    We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between l=120\degr and l=240\degr. These observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.3e6 K), whereas the halo emission measure varies by an order of magnitude (~0.0005-0.006 cm^-6 pc). When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in isolated extraplanar supernova remnants -- this model predicts emission an order of magnitude too faint. A model of a supernova-driven interstellar medium, including the flow of hot gas from the disk into the halo in a galactic fountain, gives good agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of ~2, but there are a several possible explanations for this discrepancy. We therefore conclude that a major (possibly dominant) contributor to the halo X-ray emission observed with XMM-Newton is a fountain of hot gas driven into the halo by disk supernovae. However, we cannot rule out the possibility that the extended hot halo of accreted material predicted by disk galaxy formation models also contributes to the emission.Comment: 20 pages, 14 figures. New version accepted for publication in ApJ. Changes include new section discussing systematic errors (Section 3.2), improved method for characterizing our model spectra (4.2.2), changes to discussion of other observations (5.1). Note that we can no longer rule out possibility that extended hot halo of accreted material contributes to observed halo emission (see 5.2.1
    corecore